Difference between revisions of "2017 USAJMO Problems/Problem 3"

(Solution)
(Solution)
Line 21: Line 21:
  
 
==Solution==
 
==Solution==
WLOG, let <math>AB = 1</math>. Let <math>[ABD] = X, [ACD] = Y</math>, and  <math>\angle BAD = \theta</math>. After some angle chasing, we find that <math>\angle BCF \cong \angle BCE \cong \theta</math> and <math>\angle FBC \cong \angle BCE \cong 120^{\circ}</math>. Therefore, <math>\triangle FBC</math> ~ <math>\triangle BCE</math>.  
+
WLOG, let <math>AB = 1</math>. Let <math>[ABD] = X, [ACD] = Y</math>, and  <math>\angle BAD = \theta</math>. After some angle chasing, we find that <math>\angle BCF \cong \angle BEC \cong \theta</math> and <math>\angle FBC \cong \angle BCE \cong 120^{\circ}</math>. Therefore, <math>\triangle FBC</math> ~ <math>\triangle BCE</math>.  
  
 
------------------------------------------------------------------------------------------------------
 
------------------------------------------------------------------------------------------------------

Revision as of 23:26, 19 April 2017

Problem

($*$) Let $ABC$ be an equilateral triangle and let $P$ be a point on its circumcircle. Let lines $PA$ and $PB$ intersect at $D$; let lines $PB$ and $CA$ intersect at $E$; and let lines $PC$ and $AB$ intersect at $F$. Prove that the area of triangle $DEF$ is twice that of triangle $ABC$.

[asy]     size(3inch);     pair A = (0, 3sqrt(3)), B = (-3,0), C = (3,0), P = (0, -sqrt(3)), D = (0, 0), E1 = (6, -3sqrt(3)), F = (-6, -3sqrt(3)), O = (0, sqrt(3));     draw(Circle(O, 2sqrt(3)), black);     draw(A--B--C--cycle);     draw(B--E1--C);     draw(C--F--B);     draw(A--P);     draw(D--E1--F--cycle, dashed);     label("A", A, N);     label("B", B, W);     label("C", C, E);     label("P", P, S);     label("D", D, NW);     label("E", E1, SE);     label("F", F, SW); [/asy]

Solution

WLOG, let $AB = 1$. Let $[ABD] = X, [ACD] = Y$, and $\angle BAD = \theta$. After some angle chasing, we find that $\angle BCF \cong \angle BEC \cong \theta$ and $\angle FBC \cong \angle BCE \cong 120^{\circ}$. Therefore, $\triangle FBC$ ~ $\triangle BCE$.


Lemma 1: If $BF = k$, then $CE = \frac 1k$. This lemma results directly from the fact that $\triangle FBC$ ~ $\triangle BCE$; $\frac{BF}{BC} = \frac{BF}{1} = \frac{BC}{CE} = \frac{1}{CE}$, or $CE = \frac{1}{BF}$.


Lemma 2: $[AEF] = (k+\frac 1k + 2)(X+Y)$. We see that $[AEF] = (X+Y) \frac{[AEF]}{[ABC]} = (k+1)(1+\frac 1k)(X+Y) = (k + \frac 1k + 2)(X+Y)$, as desired.


Lemma 3: $\frac{X}{Y} = k$. We see that \[\frac XY = \frac{\frac 12 (AB)(AD) \sin(\theta)}{\frac 12 (AC)(AD) \sin (60^{\circ} - \theta)} = \frac{\sin(\theta)}{\sin (60^{\circ} - \theta)}.\] However, after some angle chasing and by the Law of Sines in $\triangle BCF$, we have $\frac{k}{\sin(\theta)} = \frac{1}{\sin(60^{\circ} - \theta)}$, or $k = \frac{\sin(\theta)}{\sin (60^{\circ} - \theta)}$, which implies the result.


By the area lemma, we have $[BDF] = kX$ and $[CDF] = \frac{Y}{k}$.

We see that $[DEF] = [AEF] - [ABC] - [BDF] - [DCE] = Xk + Yk + \frac Xk + \frac Yk + 2X + 2Y - X - Y - Xk - \frac Yk = X + Y + \frac Xk + yk$. Thus, it suffices to show that $X + Y + \frac Xk + Yk = 2X + 2Y$, or $\frac Xk + Yk = X + Y$. Rearranging, we find this to be equivalent to $\frac XY = k$, which is Lemma 3, so the result has been proven.

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

See also

2017 USAJMO (ProblemsResources)
Preceded by
Problem 2
Followed by
Problem 4
1 2 3 4 5 6
All USAJMO Problems and Solutions