Difference between revisions of "2018 AMC 12B Problems/Problem 17"
m (→Solution 6) |
m (→Solution 5 (Using answer choices to prove mediant)) |
||
Line 41: | Line 41: | ||
==Solution 5 (Using answer choices to prove mediant)== | ==Solution 5 (Using answer choices to prove mediant)== | ||
− | As the other solutions do, the mediant <math>=\frac{9}{16}</math> is between the two fractions, with a difference of <math>\boxed{(A) 7}</math>. Suppose that the answer was not <math>A</math>, then the answer must be <math>B</math> or <math>C</math> as otherwise <math>p</math> would be negative. Then, the possible fractions with lower denominator would be <math>\frac{k-11}{k}</math> for <math>k=12,13,14,15</math> and <math>\frac{k-13}{k}</math> for <math>k=14,15,</math> which are clearly not anywhere close to <math>\frac{4}{7}\approx 0.6</math> | + | As the other solutions do, the mediant <math>=\frac{9}{16}</math> is between the two fractions, with a difference of <math>\boxed{\textbf{(A)}\ 7}</math>. Suppose that the answer was not <math>A</math>, then the answer must be <math>B</math> or <math>C</math> as otherwise <math>p</math> would be negative. Then, the possible fractions with lower denominator would be <math>\frac{k-11}{k}</math> for <math>k=12,13,14,15</math> and <math>\frac{k-13}{k}</math> for <math>k=14,15,</math> which are clearly not anywhere close to <math>\frac{4}{7}\approx 0.6</math> |
==Solution 6== | ==Solution 6== |
Revision as of 13:01, 2 March 2018
Contents
Problem
Let and be positive integers such that and is as small as possible. What is ?
Solution 1
We claim that, between any two fractions and , if , the fraction with smallest denominator between them is . To prove this, we see that
which reduces to . We can easily find that , giving an answer of .
Solution 2 (requires justification)
Assume that the difference results in a fraction of the form . Then,
Also assume that the difference results in a fraction of the form . Then,
Solving the system of equations yields and . Therefore, the answer is
Solution 3
Cross-multiply the inequality to get
Then,
Since , are integers, is an integer. To minimize , start from , which gives . This limits to be greater than , so test values of starting from . However, to do not give integer values of .
Once , it is possible for to be equal to , so could also be equal to The next value, , is not a solution, but gives . Thus, the smallest possible value of is , and the answer is .
Solution 4
Graph the regions and . Note that the lattice point is the smallest magnitude one which appears within the region bounded by the two graphs. Thus, our fraction is and the answer is .
Remark: This also gives an intuitive geometric proof of the mediant using vectors.
Solution 5 (Using answer choices to prove mediant)
As the other solutions do, the mediant is between the two fractions, with a difference of . Suppose that the answer was not , then the answer must be or as otherwise would be negative. Then, the possible fractions with lower denominator would be for and for which are clearly not anywhere close to
Solution 6
Inverting the given inequality we get
which simplifies to
We can now substitute . Note we need to find .
which simplifies to
Cleary is greater than . We will now substitute to get
The inequality simplifies to . The inequality simplifies to . Combining the two we get
Since and are integers, the smallest values of and that satisfy the above equation are and respectively. Only works.
Solution 7
Start with . Repeat the following process until you arrive at the answer: if the fraction is less than or equal to , add to the numerator; otherwise, if it is greater than or equal to , add one to the denominator. We have:
.
See Also
2018 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 16 |
Followed by Problem 18 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.