Difference between revisions of "1953 AHSME Problems/Problem 23"

m
(I rewrote the original solution with the format used in most other solutions, while still keeping most of the original solution intact.)
 
Line 1: Line 1:
The equation <math>\sqrt {x + 10} - \frac {6}{\sqrt {x + 10}} = 5</math> has:
+
==Problem==
  
<math>\textbf{(A)}</math> an extraneous root between <math>-5</math> and <math>-1</math>
+
The equation <math>\sqrt {x + 10} - \frac {6}{\sqrt {x + 10}} = 5</math> has:
  
<math>\textbf{(B)}</math> an extraneous root between <math>-10</math> and <math>-6</math>  
+
<math>\textbf{(A)}\ \text{an extraneous root between } - 5\text{ and } - 1 \\
 +
\textbf{(B)}\ \text{an extraneous root between }-10\text{ and }-6\\ \textbf{(C)}\ \text{a true root between }20\text{ and }25\qquad
 +
\textbf{(D)}\ \text{two true roots}\\ \textbf{(E)}\ \text{two extraneous roots}  </math>
  
<math>\textbf{(C)}</math> a true root between <math>20</math> and <math>25</math>
+
==Solution==
 +
We can multiply both sides by <math>\sqrt{x+10}</math> to get <math>x+4=5\sqrt{x+10}</math>. We can now square both sides to get <math>x^2+8x+16=25x+250</math>, which yields <math>x^2-17x-234=0</math>. We can factor the quadratic as <math>(x+9)(x-26)=0</math>, giving us roots of <math>-9</math> and <math>26</math>. Plugging in these values, we find that <math>-9</math> is an extraneous root and <math>26</math> is a true root. This gives us the final answer of <math>\boxed{\textbf{(B)}\ \text{an extraneous root between }-10\text{ and }-6}</math>.
  
<math>\textbf{(D)}</math> two true roots
+
==See Also==
  
<math>\textbf{(E)}</math> two extraneous roots
+
{{AHSME 50p box|year=1953|num-b=22|num-a=24}}
  
We multiply both sides by <math>\sqrt{x+10}</math> to get the equation <math>x+4=5\sqrt{x+10}</math>. We square both sides to get <math>x^2+8x+16=25x+250</math>, or <math>x^2-17x-234=0</math>. We can factor the quadratic as <math>(x+9)(x-26)=0</math>, giving us roots of <math>-9</math> and <math>26</math>. We plug these values in to find that <math>-9</math> is an extraneous root and that <math>26</math> is a true root, giving an answer of <math>\boxed{B}</math>.
+
[[Category:Introductory Algebra Problems]]
 +
{{MAA Notice}}

Latest revision as of 19:30, 27 November 2019

Problem

The equation $\sqrt {x + 10} - \frac {6}{\sqrt {x + 10}} = 5$ has:

$\textbf{(A)}\ \text{an extraneous root between } - 5\text{ and } - 1 \\  \textbf{(B)}\ \text{an extraneous root between }-10\text{ and }-6\\ \textbf{(C)}\ \text{a true root between }20\text{ and }25\qquad \textbf{(D)}\ \text{two true roots}\\ \textbf{(E)}\ \text{two extraneous roots}$

Solution

We can multiply both sides by $\sqrt{x+10}$ to get $x+4=5\sqrt{x+10}$. We can now square both sides to get $x^2+8x+16=25x+250$, which yields $x^2-17x-234=0$. We can factor the quadratic as $(x+9)(x-26)=0$, giving us roots of $-9$ and $26$. Plugging in these values, we find that $-9$ is an extraneous root and $26$ is a true root. This gives us the final answer of $\boxed{\textbf{(B)}\ \text{an extraneous root between }-10\text{ and }-6}$.

See Also

1953 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 22
Followed by
Problem 24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png