Difference between revisions of "2014 AMC 10A Problems/Problem 22"

m (Solution (Trigonometry))
(Solution was very similar)
Line 12: Line 12:
  
 
Let <math>F</math> be a point on line <math>\overline{CD}</math> such that points <math>C</math> and <math>F</math> are distinct and that <math>\angle EBF = 15^\circ</math>. By the angle bisector theorem, <math>\frac{\overline{BC}}{\overline{BF}} = \frac{\overline{CE}}{\overline{EF}}</math>. Since <math>\triangle BFC</math> is a <math>30-60-90</math> right triangle, <math>\overline{CF} = \frac{10\sqrt{3}}{3}</math> and <math>\overline{BF} = \frac{20\sqrt{3}}{3}</math>. Additionally, <cmath>\overline{CE} + \overline{EF} = \overline{CF} = \frac{10\sqrt{3}}{3}</cmath>Now, substituting in the obtained values, we get <math>\frac{10}{\frac{20\sqrt{3}}{3}} = \frac{\overline{CE}}{\overline{EF}} \Rightarrow \frac{2\sqrt{3}}{3}\overline{CE} = \overline{EF}</math> and <math>\overline{CE} + \overline{EF} = \frac{10\sqrt{3}}{3}</math>. Substituting the first equation into the second yields <math>\frac{2\sqrt{3}}{3}\overline{CE} + \overline{CE} = \frac{10\sqrt{3}}{3} \Rightarrow \overline{CE} = 20 - 10\sqrt{3}</math>, so <math>\overline{DE} = 10\sqrt{3}</math>. Because <math>\triangle ADE</math> is a <math>30-60-90</math> triangle, <math>\overline{AE} = \boxed{\textbf{(E)}~20}</math>.
 
Let <math>F</math> be a point on line <math>\overline{CD}</math> such that points <math>C</math> and <math>F</math> are distinct and that <math>\angle EBF = 15^\circ</math>. By the angle bisector theorem, <math>\frac{\overline{BC}}{\overline{BF}} = \frac{\overline{CE}}{\overline{EF}}</math>. Since <math>\triangle BFC</math> is a <math>30-60-90</math> right triangle, <math>\overline{CF} = \frac{10\sqrt{3}}{3}</math> and <math>\overline{BF} = \frac{20\sqrt{3}}{3}</math>. Additionally, <cmath>\overline{CE} + \overline{EF} = \overline{CF} = \frac{10\sqrt{3}}{3}</cmath>Now, substituting in the obtained values, we get <math>\frac{10}{\frac{20\sqrt{3}}{3}} = \frac{\overline{CE}}{\overline{EF}} \Rightarrow \frac{2\sqrt{3}}{3}\overline{CE} = \overline{EF}</math> and <math>\overline{CE} + \overline{EF} = \frac{10\sqrt{3}}{3}</math>. Substituting the first equation into the second yields <math>\frac{2\sqrt{3}}{3}\overline{CE} + \overline{CE} = \frac{10\sqrt{3}}{3} \Rightarrow \overline{CE} = 20 - 10\sqrt{3}</math>, so <math>\overline{DE} = 10\sqrt{3}</math>. Because <math>\triangle ADE</math> is a <math>30-60-90</math> triangle, <math>\overline{AE} = \boxed{\textbf{(E)}~20}</math>.
 
==Solution 3 (Trigonometry)==
 
By Law of Sines<cmath>\frac{BC}{\sin 75^\circ}=\frac{EC}{\sin15^\circ}\rightarrow\frac{10}{\frac{\sqrt{2}+\sqrt{6}}{4}}=\frac{EC}{\frac{\sqrt{6}-\sqrt{2}}{4}}\rightarrow\frac{10}{EC}=\frac{\sqrt{6}+\sqrt{2}}{\sqrt{6}-\sqrt{2}}\rightarrow EC=\frac{10}{2+\sqrt{3}}=20-10\sqrt{3}.</cmath>Thus, <math>DE=20-(20-10\sqrt{3})=10\sqrt{3}.</math>
 
 
 
We see that <math>\triangle{ADE}</math> is a <math>30-60-90</math> triangle, leaving <math>\overline{AE}=\boxed{\textbf{(E)}~20}.</math>
 
We see that <math>\triangle{ADE}</math> is a <math>30-60-90</math> triangle, leaving <math>\overline{AE}=\boxed{\textbf{(E)}~20}.</math>
  
==Solution 4 (Measuring) ==
+
==Solution 3 (Measuring) ==
 
If we draw rectangle <math>ABCD</math> and whip out a protractor, we can draw a perfect <math>\overline{BE}</math>, almost perfectly <math>15^\circ</math> off of <math>\overline{BC}</math>. Then we can draw <math>\overline{AE}</math>, and use a ruler to measure it.  
 
If we draw rectangle <math>ABCD</math> and whip out a protractor, we can draw a perfect <math>\overline{BE}</math>, almost perfectly <math>15^\circ</math> off of <math>\overline{BC}</math>. Then we can draw <math>\overline{AE}</math>, and use a ruler to measure it.  
 
We can clearly see that the <math>\overline{AE}</math> is <math>\boxed{\textbf{(E)}~20}</math>.
 
We can clearly see that the <math>\overline{AE}</math> is <math>\boxed{\textbf{(E)}~20}</math>.

Revision as of 20:02, 17 January 2019

Problem

In rectangle $ABCD$, $\overline{AB}=20$ and $\overline{BC}=10$. Let $E$ be a point on $\overline{CD}$ such that $\angle CBE=15^\circ$. What is $\overline{AE}$?

$\textbf{(A)}\ \dfrac{20\sqrt3}3\qquad\textbf{(B)}\ 10\sqrt3\qquad\textbf{(C)}\ 18\qquad\textbf{(D)}\ 11\sqrt3\qquad\textbf{(E)}\ 20$

Solution 1 (Trigonometry)

Note that $\tan 15^\circ=\frac{EC}{10} \Rightarrow EC=20-10 \sqrt 3$. (If you do not know the tangent half-angle formula, it is $\tan \frac{\theta}2= \frac{1-\cos \theta}{\sin \theta}$). Therefore, we have $DE=10\sqrt 3$. Since $ADE$ is a $30-60-90$ triangle, $AE=2 \cdot AD=2 \cdot 10=\boxed{\textbf{(E)} \: 20}$

Solution 2 (Without Trigonometry)

Let $F$ be a point on line $\overline{CD}$ such that points $C$ and $F$ are distinct and that $\angle EBF = 15^\circ$. By the angle bisector theorem, $\frac{\overline{BC}}{\overline{BF}} = \frac{\overline{CE}}{\overline{EF}}$. Since $\triangle BFC$ is a $30-60-90$ right triangle, $\overline{CF} = \frac{10\sqrt{3}}{3}$ and $\overline{BF} = \frac{20\sqrt{3}}{3}$. Additionally, \[\overline{CE} + \overline{EF} = \overline{CF} = \frac{10\sqrt{3}}{3}\]Now, substituting in the obtained values, we get $\frac{10}{\frac{20\sqrt{3}}{3}} = \frac{\overline{CE}}{\overline{EF}} \Rightarrow \frac{2\sqrt{3}}{3}\overline{CE} = \overline{EF}$ and $\overline{CE} + \overline{EF} = \frac{10\sqrt{3}}{3}$. Substituting the first equation into the second yields $\frac{2\sqrt{3}}{3}\overline{CE} + \overline{CE} = \frac{10\sqrt{3}}{3} \Rightarrow \overline{CE} = 20 - 10\sqrt{3}$, so $\overline{DE} = 10\sqrt{3}$. Because $\triangle ADE$ is a $30-60-90$ triangle, $\overline{AE} = \boxed{\textbf{(E)}~20}$. We see that $\triangle{ADE}$ is a $30-60-90$ triangle, leaving $\overline{AE}=\boxed{\textbf{(E)}~20}.$

Solution 3 (Measuring)

If we draw rectangle $ABCD$ and whip out a protractor, we can draw a perfect $\overline{BE}$, almost perfectly $15^\circ$ off of $\overline{BC}$. Then we can draw $\overline{AE}$, and use a ruler to measure it. We can clearly see that the $\overline{AE}$ is $\boxed{\textbf{(E)}~20}$.

NOTE: this method is a last resort, and is pretty risky. Answer choice $\textbf{(D)}~11\sqrt{3}$ is also very close to $\textbf{(E)}~20$, meaning that we wouldn't be 100% sure of our answer. However, If we measure the angles of $\triangle ADE$, we can clearly see that it is a $30-60-90$ triangle, which verifies our answer of $\boxed{20}$.

See Also

2014 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 21
Followed by
Problem 23
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png