Difference between revisions of "2016 AMC 10A Problems/Problem 23"

m (Solution 1)
(Solutions)
Line 7: Line 7:
  
 
===Solution 1===
 
===Solution 1===
 
We see that <math>a \diamond a = 1</math>, and think of division. Testing, we see that the first condition <math>a \diamond (b \diamond c) = (a \diamond b) \cdot c</math> is satisfied, because <math>\frac{a}{\frac{b}{c}} = \frac{a}{b} \cdot c</math>. Therefore, division can be the operation <math>\diamond</math>. Solving the equation, <cmath>\frac{2016}{\frac{6}{x}} = \frac{2016}{6} \cdot x = 336x = 100\implies x=\frac{100}{336} = \frac{25}{84},</cmath> so the answer is <math>25 + 84 = \boxed{\textbf{(A) }109}</math>.
 
 
===Solution 2===
 
  
 
We can manipulate the given identities to arrive at a conclusion about the binary operator <math>\diamondsuit</math>.  Substituting <math>b = c</math> into the first identity yields <cmath>( a\ \diamondsuit\ b) \cdot b = a\ \diamondsuit\ (b\ \diamondsuit\  b) = a\ \diamondsuit\  1 = a\ \diamondsuit\ ( a\ \diamondsuit\ a) = ( a\ \diamondsuit\ a) \cdot a = a.</cmath>  Hence, <math>( a\ \diamondsuit\ b) \cdot b = a,</math> or, dividing both sides of the equation by <math>b,</math> <math>( a\ \diamondsuit\ b) = \frac{a}{b}.</math>
 
We can manipulate the given identities to arrive at a conclusion about the binary operator <math>\diamondsuit</math>.  Substituting <math>b = c</math> into the first identity yields <cmath>( a\ \diamondsuit\ b) \cdot b = a\ \diamondsuit\ (b\ \diamondsuit\  b) = a\ \diamondsuit\  1 = a\ \diamondsuit\ ( a\ \diamondsuit\ a) = ( a\ \diamondsuit\ a) \cdot a = a.</cmath>  Hence, <math>( a\ \diamondsuit\ b) \cdot b = a,</math> or, dividing both sides of the equation by <math>b,</math> <math>( a\ \diamondsuit\ b) = \frac{a}{b}.</math>
Line 16: Line 12:
 
Hence, the given equation becomes <math>\frac{2016}{\frac{6}{x}} = 100</math>.  Solving yields <math>x=\frac{100}{336} = \frac{25}{84},</math> so the answer is <math>25 + 84 = \boxed{\textbf{(A) }109.}</math>
 
Hence, the given equation becomes <math>\frac{2016}{\frac{6}{x}} = 100</math>.  Solving yields <math>x=\frac{100}{336} = \frac{25}{84},</math> so the answer is <math>25 + 84 = \boxed{\textbf{(A) }109.}</math>
  
===Solution 3===
+
===Solution 2===
  
 
One way to eliminate the <math>\diamondsuit</math> in this equation is to make <math>a = b</math> so that  <math>a\,\diamondsuit\, (b\,\diamondsuit \,c) = c</math>. In this case, we can make <math>b = 2016</math>.
 
One way to eliminate the <math>\diamondsuit</math> in this equation is to make <math>a = b</math> so that  <math>a\,\diamondsuit\, (b\,\diamondsuit \,c) = c</math>. In this case, we can make <math>b = 2016</math>.

Revision as of 20:41, 27 January 2019

Problem

A binary operation $\diamondsuit$ has the properties that $a\,\diamondsuit\, (b\,\diamondsuit \,c) = (a\,\diamondsuit \,b)\cdot c$ and that $a\,\diamondsuit \,a=1$ for all nonzero real numbers $a, b,$ and $c$. (Here $\cdot$ represents multiplication). The solution to the equation $2016 \,\diamondsuit\, (6\,\diamondsuit\, x)=100$ can be written as $\tfrac{p}{q}$, where $p$ and $q$ are relatively prime positive integers. What is $p+q?$

$\textbf{(A) }109\qquad\textbf{(B) }201\qquad\textbf{(C) }301\qquad\textbf{(D) }3049\qquad\textbf{(E) }33,601$

Solutions

Solution 1

We can manipulate the given identities to arrive at a conclusion about the binary operator $\diamondsuit$. Substituting $b = c$ into the first identity yields \[( a\ \diamondsuit\ b) \cdot b = a\ \diamondsuit\ (b\ \diamondsuit\  b) = a\ \diamondsuit\  1 = a\ \diamondsuit\ ( a\ \diamondsuit\ a) = ( a\ \diamondsuit\ a) \cdot a = a.\] Hence, $( a\ \diamondsuit\ b) \cdot b = a,$ or, dividing both sides of the equation by $b,$ $( a\ \diamondsuit\ b) = \frac{a}{b}.$

Hence, the given equation becomes $\frac{2016}{\frac{6}{x}} = 100$. Solving yields $x=\frac{100}{336} = \frac{25}{84},$ so the answer is $25 + 84 = \boxed{\textbf{(A) }109.}$

Solution 2

One way to eliminate the $\diamondsuit$ in this equation is to make $a = b$ so that $a\,\diamondsuit\, (b\,\diamondsuit \,c) = c$. In this case, we can make $b = 2016$.

\[2016 \,\diamondsuit\, (6\,\diamondsuit\, x)=100\implies  (2016\, \diamondsuit\, 6) \cdot x = 100\]

By multiplying both sides by $\frac{6}{x}$, we get:

\[(2016\, \diamondsuit\, 6) \cdot 6 = \frac{600}{x}\implies  2016 \, \diamondsuit\, (6\, \diamondsuit\, 6) = \frac{600}{x}\]

Because $6\, \diamondsuit\, 6 = 2016\, \diamondsuit\, 2016 = 1:$

\[2016 \, \diamondsuit\, (2016\, \diamondsuit\, 2016) = \frac{600}{x}\implies  (2016\, \diamondsuit\, 2016) \cdot 2016 = \frac{600}{x}\implies  2016 = \frac{600}{x}\]

Therefore, $x = \frac{600}{2016} = \frac{25}{84}$, so the answer is $25 + 84 = \boxed{\textbf{(A) }109.}$

See Also

2016 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 22
Followed by
Problem 24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2016 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 19
Followed by
Problem 21
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png