Difference between revisions of "2019 AMC 10A Problems/Problem 15"
(Created page with "{{duplicate|2019 AMC 10A #15 and 2019 AMC 12A #9}} ==Problem== A sequence of numbers is defined recursively by <math>a_1...") |
Brendanb4321 (talk | contribs) (→Solution) |
||
Line 9: | Line 9: | ||
==Solution== | ==Solution== | ||
+ | |||
+ | Using the recursive formula, we find <math>a_3=\frac{3}{10}</math>, <math>a_4=\frac{3}{14}</math>, and so on. It appears that <math>a_n=\frac{3}{4n-1}</math>, for all <math>n</math>. Setting <math>n=2019</math>, we find <math>a_{2019}=\frac{3}{8075}</math>, so the answer is <math>\boxed{\textbf{(E) }8078}</math>. | ||
+ | |||
+ | |||
+ | To prove this formula, we use induction. We are given that <math>a_1=1</math> and <math>a_2=\frac{3}{7}</math>, which satisfy our formula. Now assume the formula holds true for all <math>n\le m</math> for some positive integer <math>m</math>. By our assumption, <math>a_{m-1}=\frac{3}{4m-5}</math> and <math>a_m=\frac{3}{4m-2}</math>. Using the recursive formula, <cmath>a_{m+1}=\frac{a_{m-1}\cdot a_m}{2a_{m-1}-a_m}=\frac{\frac{3}{4m-5}\cdot\frac{3}{4m-2}}{2\cdot\frac{3}{4m-5}-\frac{3}{4m-2}}=\frac{(\frac{3}{4m-5}\cdot\frac{3}{4m-2})(4m-5)(4m-2)}{(2\cdot\frac{3}{4m-5}-\frac{3}{4m-2})(4m-5)(4m-2)}=\frac{9}{6(4m-2)-3(4m-5)}=\frac{3}{4m+1},</cmath> | ||
+ | so our induction is complete. | ||
==See Also== | ==See Also== |
Revision as of 16:26, 9 February 2019
- The following problem is from both the 2019 AMC 10A #15 and 2019 AMC 12A #9, so both problems redirect to this page.
Problem
A sequence of numbers is defined recursively by , , and for all Then can be written as , where and are relatively prime positive inegers. What is
Solution
Using the recursive formula, we find , , and so on. It appears that , for all . Setting , we find , so the answer is .
To prove this formula, we use induction. We are given that and , which satisfy our formula. Now assume the formula holds true for all for some positive integer . By our assumption, and . Using the recursive formula,
so our induction is complete.
See Also
2019 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 14 |
Followed by Problem 16 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
2019 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 8 |
Followed by Problem 10 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.