Difference between revisions of "2006 AMC 10A Problems/Problem 24"

m (added category and link to previous and next problem)
m
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
Centers of adjacent faces of a unit cube are joined to form a regular octahedron. What is the volume of this octahedron?  
+
Centers of adjacent faces of a unit [[cube (geometry) | cube]] are joined to form a regular [[octahedron]]. What is the volume of this octahedron?  
  
 
<math>\mathrm{(A) \ } \frac{1}{8}\qquad\mathrm{(B) \ } \frac{1}{6}\qquad\mathrm{(C) \ } \frac{1}{4}\qquad\mathrm{(D) \ } \frac{1}{3}\qquad\mathrm{(E) \ } \frac{1}{2}\qquad</math>  
 
<math>\mathrm{(A) \ } \frac{1}{8}\qquad\mathrm{(B) \ } \frac{1}{6}\qquad\mathrm{(C) \ } \frac{1}{4}\qquad\mathrm{(D) \ } \frac{1}{3}\qquad\mathrm{(E) \ } \frac{1}{2}\qquad</math>  
 
== Solution ==
 
== Solution ==
 +
{{solution}}
 
== See Also ==
 
== See Also ==
 
*[[2006 AMC 10A Problems]]
 
*[[2006 AMC 10A Problems]]

Revision as of 11:22, 30 October 2006

Problem

Centers of adjacent faces of a unit cube are joined to form a regular octahedron. What is the volume of this octahedron?

$\mathrm{(A) \ } \frac{1}{8}\qquad\mathrm{(B) \ } \frac{1}{6}\qquad\mathrm{(C) \ } \frac{1}{4}\qquad\mathrm{(D) \ } \frac{1}{3}\qquad\mathrm{(E) \ } \frac{1}{2}\qquad$

Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it.

See Also