Difference between revisions of "1990 AIME Problems/Problem 13"
Chessmaster3 (talk | contribs) m (→Problem) |
Alexlikemath (talk | contribs) |
||
Line 2: | Line 2: | ||
Let <math>T = \{9^k : k ~ \mbox{is an integer}, 0 \le k \le 4000\}</math>. Given that <math>9^{4000}_{}</math> has 3817 [[digit]]s and that its first (leftmost) digit is 9, how many [[element]]s of <math>T_{}^{}</math> have 9 as their leftmost digit? | Let <math>T = \{9^k : k ~ \mbox{is an integer}, 0 \le k \le 4000\}</math>. Given that <math>9^{4000}_{}</math> has 3817 [[digit]]s and that its first (leftmost) digit is 9, how many [[element]]s of <math>T_{}^{}</math> have 9 as their leftmost digit? | ||
− | ==Solution== | + | ==Solution 1== |
+ | Since <math>9^{4000}</math> has 3816 digits more than <math>9^1</math>, <math>4000 - 3816 = \boxed{184}</math> numbers have 9 as their leftmost digits. | ||
+ | |||
+ | ==Solution 2== | ||
+ | Let's divide all elements of T into sections. Each section ranges from <math>10^{i}</math> to <math>10^{i+1}</math> And, each section must have 1 or 2 elements. So, let's consider both cases. | ||
+ | |||
+ | If a section has 1 element, we claim that the number doesn't have 9 as the leftmost digit. Let the element be <math>9^{k}</math> and the section ranges from <math>10^{i}</math> to <math>10^{i+1}</math>. To the contrary, let's assume the number does have 9 as the leftmost digit. Thus, <math>9 \cdot 10^i \leq 9^k</math> But, if you divide both sides by 9, you get <math>10^i \leq 9^{k-1}</math>, and because <math>9^{k-1} < 9^{k} \leq 10^{i+1}</math>, so we have another number in the same section. Which is a contradiction to our assumption that the section only has 1 element. So, the number doesn't have 9 as the leftmost digit. | ||
+ | |||
+ | If a section has 2 elements, we claim one has to have a 9 as the leftmost digit, one doesn't. Let the elements be <math>9^{k}</math> and <math>9^{k+1}</math>, and the section ranges from <math>10^{i}</math> to <math>10^{i+1}</math>. We know that <math>9^{k} \geq 10^{i}</math>, and thus <math>9^{k+1} \geq 9 \cdot 10^{i}</math>, and since <math>9^{k+1} \leq 10^{i+1}</math>, it's leftmost digit must be 9, and the other number's leftmost digit is 1. | ||
− | + | There are 3817 sections and 4001 elements. Each section has exactly one element that doesn't have 9 as the left most digit. We can take 4001 elements, subtract 3817 elements that don't have 9 as the leftmost digit, and get <math>\boxed{184}</math> numbers that have 9 as the leftmost digit. | |
+ | |||
+ | - AlexLikeMath | ||
== See also == | == See also == |
Revision as of 12:01, 27 June 2019
Contents
Problem
Let . Given that has 3817 digits and that its first (leftmost) digit is 9, how many elements of have 9 as their leftmost digit?
Solution 1
Since has 3816 digits more than , numbers have 9 as their leftmost digits.
Solution 2
Let's divide all elements of T into sections. Each section ranges from to And, each section must have 1 or 2 elements. So, let's consider both cases.
If a section has 1 element, we claim that the number doesn't have 9 as the leftmost digit. Let the element be and the section ranges from to . To the contrary, let's assume the number does have 9 as the leftmost digit. Thus, But, if you divide both sides by 9, you get , and because , so we have another number in the same section. Which is a contradiction to our assumption that the section only has 1 element. So, the number doesn't have 9 as the leftmost digit.
If a section has 2 elements, we claim one has to have a 9 as the leftmost digit, one doesn't. Let the elements be and , and the section ranges from to . We know that , and thus , and since , it's leftmost digit must be 9, and the other number's leftmost digit is 1.
There are 3817 sections and 4001 elements. Each section has exactly one element that doesn't have 9 as the left most digit. We can take 4001 elements, subtract 3817 elements that don't have 9 as the leftmost digit, and get numbers that have 9 as the leftmost digit.
- AlexLikeMath
See also
1990 AIME (Problems • Answer Key • Resources) | ||
Preceded by Problem 12 |
Followed by Problem 14 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.