Difference between revisions of "2013 AMC 10B Problems/Problem 22"

(Solution 1)
Line 134: Line 134:
  
 
As in solution 1, <math>J</math> must be <math>1</math>, <math>5</math>, or <math>9</math> giving us 3 choices. Additionally <math>A+E = B+F = C+G = D+H</math>.  This means once we choose <math>J</math> there are <math>8</math> remaining choices. Going clockwise from <math>A</math> we count, <math>8</math> possibilities for <math>A</math>. Choosing <math>A</math> also determines <math>E</math> which leaves <math>6</math> choices for <math>B</math>, once <math>B</math> is chosen it also determines  <math>F</math> leaving <math>4</math> choices for <math>C</math>. Once <math>C</math> is chosen it determines <math>G</math> leaving <math>2</math> choices for <math>D</math>. Choosing <math>D</math> determines <math>H</math>, exhausting the numbers. Additionally, there are three possible values for <math>J</math>. To get the answer we multiply <math>2*4*6*8*3=\boxed{\textbf{(C) }1152}</math>.
 
As in solution 1, <math>J</math> must be <math>1</math>, <math>5</math>, or <math>9</math> giving us 3 choices. Additionally <math>A+E = B+F = C+G = D+H</math>.  This means once we choose <math>J</math> there are <math>8</math> remaining choices. Going clockwise from <math>A</math> we count, <math>8</math> possibilities for <math>A</math>. Choosing <math>A</math> also determines <math>E</math> which leaves <math>6</math> choices for <math>B</math>, once <math>B</math> is chosen it also determines  <math>F</math> leaving <math>4</math> choices for <math>C</math>. Once <math>C</math> is chosen it determines <math>G</math> leaving <math>2</math> choices for <math>D</math>. Choosing <math>D</math> determines <math>H</math>, exhausting the numbers. Additionally, there are three possible values for <math>J</math>. To get the answer we multiply <math>2*4*6*8*3=\boxed{\textbf{(C) }1152}</math>.
 +
 +
== Note ==
 +
 +
There is no rotational reflectional symmetry in the given figure because the figure is labeled with vertices.
  
 
== See also ==
 
== See also ==

Revision as of 15:41, 17 September 2019

Problem

The regular octagon $ABCDEFGH$ has its center at $J$. Each of the vertices and the center are to be associated with one of the digits $1$ through $9$, with each digit used once, in such a way that the sums of the numbers on the lines $AJE$, $BJF$, $CJG$, and $DJH$ are all equal. In how many ways can this be done?

$\textbf{(A)}\ 384 \qquad\textbf{(B)}\ 576  \qquad\textbf{(C)}\ 1152 \qquad\textbf{(D)}\ 1680 \qquad\textbf{(E)}\ 3456$

[asy] pair A,B,C,D,E,F,G,H,J; A=(20,20(2+sqrt(2))); B=(20(1+sqrt(2)),20(2+sqrt(2))); C=(20(2+sqrt(2)),20(1+sqrt(2))); D=(20(2+sqrt(2)),20); E=(20(1+sqrt(2)),0); F=(20,0); G=(0,20); H=(0,20(1+sqrt(2))); J=(10(2+sqrt(2)),10(2+sqrt(2))); draw(A--B); draw(B--C); draw(C--D); draw(D--E); draw(E--F); draw(F--G); draw(G--H); draw(H--A); dot(A); dot(B); dot(C); dot(D); dot(E); dot(F); dot(G); dot(H); dot(J); label("A",A,NNW); label("B",B,NNE); label("C",C,ENE); label("D",D,ESE); label("E",E,SSE); label("F",F,SSW); label("G",G,WSW); label("H",H,WNW); label("J",J,SE); [/asy]

Solution 1

[asy] pair A,B,C,D,E,F,G,H,J; A=(20,20(2+sqrt(2))); B=(20(1+sqrt(2)),20(2+sqrt(2))); C=(20(2+sqrt(2)),20(1+sqrt(2))); D=(20(2+sqrt(2)),20); E=(20(1+sqrt(2)),0); F=(20,0); G=(0,20); H=(0,20(1+sqrt(2))); J=(10(2+sqrt(2)),10(2+sqrt(2))); draw(A--B); draw(B--C); draw(C--D); draw(D--E); draw(E--F); draw(F--G); draw(G--H); draw(H--A); dot(A); dot(B); dot(C); dot(D); dot(E); dot(F); dot(G); dot(H); dot(J); label("A",A,NNW); label("B",B,NNE); label("C",C,ENE); label("D",D,ESE); label("E",E,SSE); label("F",F,SSW); label("G",G,WSW); label("H",H,WNW); label("J",J,SE); [/asy]

First of all, note that $J$ must be $1$, $5$, or $9$ to preserve symmetry, since the sum of 1 to 9 is 45, and we need the remaining 8 to be divisible by 4 (otherwise we will have uneven sums). So, we have:

[asy] pair A,B,C,D,E,F,G,H,J; A=(20,20(2+sqrt(2))); B=(20(1+sqrt(2)),20(2+sqrt(2))); C=(20(2+sqrt(2)),20(1+sqrt(2))); D=(20(2+sqrt(2)),20); E=(20(1+sqrt(2)),0); F=(20,0); G=(0,20); H=(0,20(1+sqrt(2))); J=(10(2+sqrt(2)),10(2+sqrt(2))); draw(A--B); draw(B--C); draw(C--D); draw(D--E); draw(E--F); draw(F--G); draw(G--H); draw(H--A); dot(A); dot(B); dot(C); dot(D); dot(E); dot(F); dot(G); dot(H); dot(J); label("A",A,NNW); label("B",B,NNE); label("C",C,ENE); label("D",D,ESE); label("E",E,SSE); label("F",F,SSW); label("G",G,WSW); label("H",H,WNW); label("J $(1, 5, 9)$",J,SE); [/asy]

We also notice that $A+E = B+F = C+G = D+H$.

WLOG, assume that $J = 1$. Thus the pairs of vertices must be $9$ and $2$, $8$ and $3$, $7$ and $4$, and $6$ and $5$. There are $4! = 24$ ways to assign these to the vertices. Furthermore, there are $2^{4} = 16$ ways to switch them (i.e. do $2$ $9$ instead of $9$ $2$).

Thus, there are $16(24) = 384$ ways for each possible J value. There are $3$ possible J values that still preserve symmetry: $384(3) = \boxed{\textbf{(C) }1152}$

Solution 2

As in solution 1, $J$ must be $1$, $5$, or $9$ giving us 3 choices. Additionally $A+E = B+F = C+G = D+H$. This means once we choose $J$ there are $8$ remaining choices. Going clockwise from $A$ we count, $8$ possibilities for $A$. Choosing $A$ also determines $E$ which leaves $6$ choices for $B$, once $B$ is chosen it also determines $F$ leaving $4$ choices for $C$. Once $C$ is chosen it determines $G$ leaving $2$ choices for $D$. Choosing $D$ determines $H$, exhausting the numbers. Additionally, there are three possible values for $J$. To get the answer we multiply $2*4*6*8*3=\boxed{\textbf{(C) }1152}$.

Note

There is no rotational reflectional symmetry in the given figure because the figure is labeled with vertices.

See also

2013 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 21
Followed by
Problem 23
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png