Difference between revisions of "2020 AMC 10A Problems/Problem 6"

(See Also)
(Solution)
Line 3: Line 3:
 
<math>\textbf{(A) } 80 \qquad \textbf{(B) } 100 \qquad \textbf{(C) } 125 \qquad \textbf{(D) } 200 \qquad \textbf{(E) } 500</math>
 
<math>\textbf{(A) } 80 \qquad \textbf{(B) } 100 \qquad \textbf{(C) } 125 \qquad \textbf{(D) } 200 \qquad \textbf{(E) } 500</math>
  
== Solution ==  
+
== Solution ==
 +
First, we need to note that the digits have to be even, but since only one even digit for the units digit (<math>0</math>) we get <math>4\cdot5\cdot5\cdot1=\boxed{100}</math>,
  
 
==See Also==
 
==See Also==

Revision as of 21:15, 31 January 2020

How many $4$-digit positive integers (that is, integers between $1000$ and $9999$, inclusive) having only even digits are divisible by $5?$

$\textbf{(A) } 80 \qquad \textbf{(B) } 100 \qquad \textbf{(C) } 125 \qquad \textbf{(D) } 200 \qquad \textbf{(E) } 500$

Solution

First, we need to note that the digits have to be even, but since only one even digit for the units digit ($0$) we get $4\cdot5\cdot5\cdot1=\boxed{100}$,

See Also

2020 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png