Difference between revisions of "2020 AMC 10A Problems/Problem 15"

(Solution)
(Solution)
Line 8: Line 8:
 
The prime factorization of <math>12!</math> is <math>2^{10} \cdot 3^5 \cdot 5^2 \cdot 7 \cdot 11</math>.  
 
The prime factorization of <math>12!</math> is <math>2^{10} \cdot 3^5 \cdot 5^2 \cdot 7 \cdot 11</math>.  
 
This yields a total of <math>11 \cdot 6 \cdot 3 \cdot 2 \cdot 2</math> divisors of <math>12!.</math>
 
This yields a total of <math>11 \cdot 6 \cdot 3 \cdot 2 \cdot 2</math> divisors of <math>12!.</math>
In order to produce a perfect square divisor, there must be an even exponent for each number in the prime factorization. Thus, there are <math>5</math> * <math>3</math> * <math>2</math> perfect squares. (For <math>2</math>, you can have <math>0</math>, <math>2</math>, <math>4</math>, <math>6</math>, <math>8</math>, or <math>1</math>0 <math>2</math>s, etc. Note that <math>7</math> and <math>11</math> can not be in the prime factorization of a perfect square because there is only one of each in <math>12!</math>.)
+
In order to produce a perfect square divisor, there must be an even exponent for each number in the prime factorization. Thus, there are <math>5 \cdot 3 \cdot 2</math> perfect squares. (For <math>2</math>, you can have <math>0</math>, <math>2</math>, <math>4</math>, <math>6</math>, <math>8</math>, or <math>1</math>0 <math>2</math>s, etc. Note that <math>7</math> and <math>11</math> can not be in the prime factorization of a perfect square because there is only one of each in <math>12!</math>.)
 
The probability that the divisor chosen is a perfect square is 1/22. m + n = 1 + 22 = 23 <math>\implies \boxed{\textbf{(E) } 23 }</math>
 
The probability that the divisor chosen is a perfect square is 1/22. m + n = 1 + 22 = 23 <math>\implies \boxed{\textbf{(E) } 23 }</math>
  

Revision as of 22:07, 31 January 2020

Problem

A positive integer divisor of $12!$ is chosen at random. The probability that the divisor chosen is a perfect square can be expressed as $\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. What is $m+n$?

$\textbf{(A)}\ 3\qquad\textbf{(B)}\ 5\qquad\textbf{(C)}\ 12\qquad\textbf{(D)}\ 18\qquad\textbf{(E)}\ 23$

Solution

The prime factorization of $12!$ is $2^{10} \cdot 3^5 \cdot 5^2 \cdot 7 \cdot 11$. This yields a total of $11 \cdot 6 \cdot 3 \cdot 2 \cdot 2$ divisors of $12!.$ In order to produce a perfect square divisor, there must be an even exponent for each number in the prime factorization. Thus, there are $5 \cdot 3 \cdot 2$ perfect squares. (For $2$, you can have $0$, $2$, $4$, $6$, $8$, or $1$0 $2$s, etc. Note that $7$ and $11$ can not be in the prime factorization of a perfect square because there is only one of each in $12!$.) The probability that the divisor chosen is a perfect square is 1/22. m + n = 1 + 22 = 23 $\implies \boxed{\textbf{(E) } 23 }$

See Also

2020 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 14
Followed by
Problem 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png