Difference between revisions of "2020 AMC 10A Problems/Problem 24"

(Created page with "==See Also== {{AMC10 box|year=2020|ab=A|num-b=23|num-a=25}} {{MAA Notice}}")
 
Line 1: Line 1:
 +
==Problem==
 +
 +
Let <math>n</math> be the least positive integer greater than <math>1000</math> for which<cmath>\gcd(63, n+120) =21\quad \text{and} \quad \gcd(n+63, 120)=60.</cmath>What is the sum of the digits of <math>n</math>?
 +
 +
<math>\textbf{(A) } 12 \qquad\textbf{(B) } 15 \qquad\textbf{(C) } 18 \qquad\textbf{(D) } 21\qquad\textbf{(E) } 24</math>
 +
 
==See Also==
 
==See Also==
  
 
{{AMC10 box|year=2020|ab=A|num-b=23|num-a=25}}
 
{{AMC10 box|year=2020|ab=A|num-b=23|num-a=25}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 23:34, 31 January 2020

Problem

Let $n$ be the least positive integer greater than $1000$ for which\[\gcd(63, n+120) =21\quad \text{and} \quad \gcd(n+63, 120)=60.\]What is the sum of the digits of $n$?

$\textbf{(A) } 12 \qquad\textbf{(B) } 15 \qquad\textbf{(C) } 18 \qquad\textbf{(D) } 21\qquad\textbf{(E) } 24$

See Also

2020 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 23
Followed by
Problem 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png