Difference between revisions of "2020 AMC 10A Problems/Problem 24"
(Created page with "==See Also== {{AMC10 box|year=2020|ab=A|num-b=23|num-a=25}} {{MAA Notice}}") |
|||
Line 1: | Line 1: | ||
+ | ==Problem== | ||
+ | |||
+ | Let <math>n</math> be the least positive integer greater than <math>1000</math> for which<cmath>\gcd(63, n+120) =21\quad \text{and} \quad \gcd(n+63, 120)=60.</cmath>What is the sum of the digits of <math>n</math>? | ||
+ | |||
+ | <math>\textbf{(A) } 12 \qquad\textbf{(B) } 15 \qquad\textbf{(C) } 18 \qquad\textbf{(D) } 21\qquad\textbf{(E) } 24</math> | ||
+ | |||
==See Also== | ==See Also== | ||
{{AMC10 box|year=2020|ab=A|num-b=23|num-a=25}} | {{AMC10 box|year=2020|ab=A|num-b=23|num-a=25}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 23:34, 31 January 2020
Problem
Let be the least positive integer greater than for whichWhat is the sum of the digits of ?
See Also
2020 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 23 |
Followed by Problem 25 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.