Difference between revisions of "1985 AIME Problems/Problem 10"

m
(solution added)
Line 6: Line 6:
 
where <math>x</math> is a [[real number]], and <math>\lfloor z \rfloor</math> denotes the greatest [[integer]] less than or equal to <math>z</math>?
 
where <math>x</math> is a [[real number]], and <math>\lfloor z \rfloor</math> denotes the greatest [[integer]] less than or equal to <math>z</math>?
 
== Solution ==
 
== Solution ==
{{solution}}
+
We will be able to reach the same number of integers while <math>x</math> ranges from 0 to 1 as we will when <math>x</math> ranges from <math>n</math> to <math>n + 1</math> for any integer <math>n</math>.  Since <math>\lfloor 2\cdot50 \rfloor + \lfloor 4\cdot50 \rfloor + \lfloor 6\cdot50 \rfloor + \lfloor 8\cdot50 \rfloor = 100 + 200 + 300 + 400</math>, the answer must be exactly 50 times the number of integers we will be able to reach as <math>x</math> ranges from 0 to 1, including 1 but excluding 0.
 +
 
 +
As we change the value of <math>x</math>, the value of our [[expression]] changes only when <math>x</math> crosses [[rational number]] of the form <math>\frac{m}{n}</math>, where <math>n</math> is divisible by 2, 4, 6 or 8.  Thus, we need only see what happens at the numbers of the form <math>\frac{m}{\textrm{gcd}(2, 4, 6, 8)} = \frac{m}{24}</math>.  This gives us 24 calculations to make; we summarize the results here:
 +
 
 +
<math>\frac{1}{24}, \frac{2}{24} \to 0</math>
 +
 
 +
<math>\frac{3}{24} \to 1</math>
 +
 
 +
<math>\frac{4}{24}, \frac{5}{24} \to 2</math>
 +
 
 +
<math>\frac{6}{24}, \frac{7}{24} \to 4</math>
 +
 
 +
<math>\frac{8}{24} \to 5</math>
 +
 
 +
<math>\frac{9}{24}, \frac{10}{24}, \frac{11}{24} \to 6</math>
 +
 
 +
<math>\frac{12}{24}, \frac{13}{24}, \frac{14}{24} \to 10</math>
 +
 
 +
<math>\frac{15}{24} \to 11</math>
 +
 
 +
<math>\frac{16}{24},\frac{17}{24} \to 12</math>
 +
 
 +
<math>\frac{18}{24}, \frac{19}{24} \to 14</math>
 +
 
 +
<math>\frac{20}{24}\to 15</math>
 +
 
 +
<math>\frac{21}{24}, \frac{22}{24}, \frac{23}{24} \to16</math>
 +
 
 +
<math>\frac{24}{24} \to 20</math>
 +
 
 +
Thus, we hit 12 of the first 20 integers and so we hit <math>50 \cdot 12 = 600</math> of the first 100.
 +
 
 
== See also ==
 
== See also ==
 
* [[1985 AIME Problems/Problem 9 | Previous problem]]
 
* [[1985 AIME Problems/Problem 9 | Previous problem]]
Line 12: Line 43:
 
* [[1985 AIME Problems]]
 
* [[1985 AIME Problems]]
 
* [[Floor function]]
 
* [[Floor function]]
 +
 +
[[Category:Intermediate Algebra Problems]]

Revision as of 16:48, 22 January 2007

Problem

How many of the first 1000 positive integers can be expressed in the form

$\lfloor 2x \rfloor + \lfloor 4x \rfloor + \lfloor 6x \rfloor + \lfloor 8x \rfloor$,

where $x$ is a real number, and $\lfloor z \rfloor$ denotes the greatest integer less than or equal to $z$?

Solution

We will be able to reach the same number of integers while $x$ ranges from 0 to 1 as we will when $x$ ranges from $n$ to $n + 1$ for any integer $n$. Since $\lfloor 2\cdot50 \rfloor + \lfloor 4\cdot50 \rfloor + \lfloor 6\cdot50 \rfloor + \lfloor 8\cdot50 \rfloor = 100 + 200 + 300 + 400$, the answer must be exactly 50 times the number of integers we will be able to reach as $x$ ranges from 0 to 1, including 1 but excluding 0.

As we change the value of $x$, the value of our expression changes only when $x$ crosses rational number of the form $\frac{m}{n}$, where $n$ is divisible by 2, 4, 6 or 8. Thus, we need only see what happens at the numbers of the form $\frac{m}{\textrm{gcd}(2, 4, 6, 8)} = \frac{m}{24}$. This gives us 24 calculations to make; we summarize the results here:

$\frac{1}{24}, \frac{2}{24} \to 0$

$\frac{3}{24} \to 1$

$\frac{4}{24}, \frac{5}{24} \to 2$

$\frac{6}{24}, \frac{7}{24} \to 4$

$\frac{8}{24} \to 5$

$\frac{9}{24}, \frac{10}{24}, \frac{11}{24} \to 6$

$\frac{12}{24}, \frac{13}{24}, \frac{14}{24} \to 10$

$\frac{15}{24} \to 11$

$\frac{16}{24},\frac{17}{24} \to 12$

$\frac{18}{24}, \frac{19}{24} \to 14$

$\frac{20}{24}\to 15$

$\frac{21}{24}, \frac{22}{24}, \frac{23}{24} \to16$

$\frac{24}{24} \to 20$

Thus, we hit 12 of the first 20 integers and so we hit $50 \cdot 12 = 600$ of the first 100.

See also