# 1985 AIME Problems/Problem 9

## Problem

In a circle, parallel chords of lengths 2, 3, and 4 determine central angles of $\alpha$, $\beta$, and $\alpha + \beta$ radians, respectively, where $\alpha + \beta < \pi$. If $\cos \alpha$, which is a positive rational number, is expressed as a fraction in lowest terms, what is the sum of its numerator and denominator?

## Solution 1 $[asy] size(200); pointpen = black; pathpen = black + linewidth(0.8); real r = 8/15^0.5, a = 57.91, b = 93.135; pair O = (0,0), A = r*expi(pi/3); D(CR(O,r)); D(O--rotate(a/2)*A--rotate(-a/2)*A--cycle); D(O--rotate(b/2)*A--rotate(-b/2)*A--cycle); D(O--rotate((a+b)/2)*A--rotate(-(a+b)/2)*A--cycle); MP("2",(rotate(a/2)*A+rotate(-a/2)*A)/2,NE); MP("3",(rotate(b/2)*A+rotate(-b/2)*A)/2,NE); MP("4",(rotate((a+b)/2)*A+rotate(-(a+b)/2)*A)/2,NE); D(anglemark(rotate(-(a+b)/2)*A,O,rotate((a+b)/2)*A,5)); label("$$\alpha+\beta$$",(0.08,0.08),NE,fontsize(8)); [/asy]$

All chords of a given length in a given circle subtend the same arc and therefore the same central angle. Thus, by the given, we can re-arrange our chords into a triangle with the circle as its circumcircle. $[asy] size(200); pointpen = black; pathpen = black + linewidth(0.8); real r = 8/15^0.5, a = 57.91, b = 93.135; pair O = (0,0), A = r*expi(pi/3), A1 = rotate(a/2)*A, A2 = rotate(-a/2)*A, A3 = rotate(-a/2-b)*A; D(CR(O,r)); D(O--A1--A2--cycle); D(O--A2--A3--cycle); D(O--A1--A3--cycle); MP("2",(A1+A2)/2,NE); MP("3",(A2+A3)/2,E); MP("4",(A1+A3)/2,E); D(anglemark(A2,O,A1,5)); D(anglemark(A3,O,A2,5)); label("$$\alpha$$",(0.07,0.16),NE,fontsize(8)); label("$$\beta$$",(0.12,-0.16),NE,fontsize(8)); [/asy]$

This triangle has semiperimeter $\frac{2 + 3 + 4}{2}$ so by Heron's formula it has area $K = \sqrt{\frac92 \cdot \frac52 \cdot \frac32 \cdot \frac12} = \frac{3}{4}\sqrt{15}$. The area of a given triangle with sides of length $a, b, c$ and circumradius of length $R$ is also given by the formula $K = \frac{abc}{4R}$, so $\frac6R = \frac{3}{4}\sqrt{15}$ and $R = \frac8{\sqrt{15}}$.

Now, consider the triangle formed by two radii and the chord of length 2. This isosceles triangle has vertex angle $\alpha$, so by the Law of Cosines, $$2^2 = R^2 + R^2 - 2R^2\cos \alpha \Longrightarrow \cos \alpha = \frac{2R^2 - 4}{2R^2} = \frac{17}{32}$$ and the answer is $17 + 32 = \boxed{049}$.

## Solution 2 (Law of Cosines) $[asy] size(200); pointpen = black; pathpen = black + linewidth(0.8); real r = 8/15^0.5, a = 57.91, b = 93.135; pair O = (0,0), A = r*expi(pi/3), A1 = rotate(a/2)*A, A2 = rotate(-a/2)*A, A3 = rotate(-a/2-b)*A; D(CR(O,r)); D(O--A1--A2--cycle); D(O--A2--A3--cycle); D(O--A1--A3--cycle); MP("2",(A1+A2)/2,NE); MP("3",(A2+A3)/2,E); MP("4",(A1+A3)/2,E); D(anglemark(A2,O,A1,5)); D(anglemark(A3,O,A2,5)); D(anglemark(A2,A3,A1,18)); label("$$\alpha$$",(0.07,0.16),NE,fontsize(8)); label("$$\beta$$",(0.12,-0.16),NE,fontsize(8)); label("$$\alpha$$/2",(0.82,-1.25),NE,fontsize(8)); [/asy]$

It’s easy to see in triangle which lengths 2, 3, and 4, that the angle opposite the side 2 is $\frac{\alpha}{2}$, and using the Law of Cosines, we get: $$2^2 = 3^2 + 4^2 - 2\cdot3\cdot4\cos\frac{\alpha}{2}$$ Which, rearranges to: $$21 = 24\cos\frac{\alpha}{2}$$ And, that gets us: $$\cos\frac{\alpha}{2} = 7/8$$ Using $\cos 2\theta = 2\cos^2 \theta - 1$, we get that: $$\cos\alpha = 17/32$$ Which gives an answer of $\boxed{049}$

- AlexLikeMath

## Solution 3 (trig)

Using the first diagram above, $$\sin \frac{\alpha}{2} = \frac{1}{r}$$ $$\sin \frac{\beta}{2} = \frac{1.5}{r}$$ $$\sin(\frac{\alpha}{2}+\frac{\beta}{2})=\frac{2}{r}$$ by the Pythagorean trig identities, $$\cos\frac{\alpha}{2}=\sqrt{1-\frac{1}{r^2}}$$ $$\cos\frac{\beta}{2}=\sqrt{1-\frac{2.25}{r^2}}$$ so by the composite sine identity $$\frac{2}{r}=\frac{1}{r}\sqrt{1-\frac{2.25}{r^2}}+\frac{1.5}{r}\sqrt{1-\frac{1}{r^2}}$$ multiply both sides by $2r$, then subtract $\sqrt{4-\frac{9}{r^2}}$ from both sides squaring both sides, we get $$16 - 8\sqrt{4-\frac{9}{r^2}} + 4 - \frac{9}{r^2}=9 - \frac{9}{r^2}$$ $$\Longrightarrow 16+4=9+8\sqrt{4-\frac{9}{r^2}}\Longrightarrow\frac{11}{8}=\sqrt{4-\frac{9}{r^2}}\Longrightarrow\frac{121}{64}=4-\frac{9}{r^2}$$ $$\Longrightarrow\frac{(256-121)r^2}{64}=9\Longrightarrow r^2= \frac{64}{15}$$ plugging this back in, $$\cos^2(\frac{\alpha}{2})=1-\frac{15}{64}=\frac{49}{64}$$ so $$\cos(\alpha)=2(\frac{49}{64})-1=\frac{34}{64}=\frac{17}{32}$$ and the answer is $17+32=\boxed{049}$