Difference between revisions of "2010 AMC 12B Problems/Problem 21"
(Fixed AMC 12 box) |
|||
Line 32: | Line 32: | ||
<cmath> = -8 x^7+252 x^6-3248 x^5+22050 x^4-84392 x^3+179928 x^2-194592 x+80325 </cmath> | <cmath> = -8 x^7+252 x^6-3248 x^5+22050 x^4-84392 x^3+179928 x^2-194592 x+80325 </cmath> | ||
− | + | == See also == | |
+ | {{AMC12 box|year=2010|ab=B|num-b=20|num-a=22}} | ||
[[Category:Intermediate Algebra Problems]] | [[Category:Intermediate Algebra Problems]] | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 14:22, 17 June 2020
Problem 21
Let , and let be a polynomial with integer coefficients such that
, and
.
What is the smallest possible value of ?
Solution
We observe that because , if we define a new polynomial such that , has roots when ; namely, when .
Thus since has roots when , we can factor the product out of to obtain a new polynomial such that .
Then, plugging in values of we get
Thus, the least value of must be the . Solving, we receive , so our answer is .
To complete the solution, we can let , and then try to find . We know from the above calculation that , and . Then we can let , getting . Let , then . Therefore, it is possible to choose , so the goal is accomplished. As a reference, the polynomial we get is
See also
2010 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 20 |
Followed by Problem 22 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.