Difference between revisions of "1987 AIME Problems"
m (→See also: piped cat) |
m |
||
Line 1: | Line 1: | ||
== Problem 1 == | == Problem 1 == | ||
+ | An ordered pair <math>\displaystyle (m,n)</math> of non-negative integers is called "simple" if the addition <math>\displaystyle m+n</math> in base <math>\displaystyle 10</math> requires no carrying. Find the number of simple ordered pairs of non-negative integers that sum to <math>\displaystyle 1492</math>. | ||
[[1987 AIME Problems/Problem 1|Solution]] | [[1987 AIME Problems/Problem 1|Solution]] | ||
== Problem 2 == | == Problem 2 == | ||
+ | What is the largest possible distance between two points, one on the sphere of radius 19 with center <math>\displaystyle (-2,-10,-5)</math> and the other on the sphere of radius 87 with center <math>\displaystyle (12,8,-16)</math>? | ||
[[1987 AIME Problems/Problem 2|Solution]] | [[1987 AIME Problems/Problem 2|Solution]] | ||
== Problem 3 == | == Problem 3 == | ||
+ | By a proper divisior of a natural number we mean a positive integral divisor other than 1 and the number itself. A natural number greater than 1 will be called "nice" if it is equal to the product of its distinct proper divisors. What is the sum of the first ten nice numbers? | ||
[[1987 AIME Problems/Problem 3|Solution]] | [[1987 AIME Problems/Problem 3|Solution]] | ||
== Problem 4 == | == Problem 4 == | ||
+ | Find the area of the region enclosed by the graph of <math>\displaystyle |x-60|+|y|=|x/4|.</math> | ||
[[1987 AIME Problems/Problem 4|Solution]] | [[1987 AIME Problems/Problem 4|Solution]] | ||
== Problem 5 == | == Problem 5 == | ||
+ | Find <math>\displaystyle 3x^2 y^2</math> if <math>\displaystyle x</math> and <math>\displaystyle y</math> are integers such that <math>\displaystyle y^2 + 3x^2 y^2 = 30x^2 + 517</math>. | ||
[[1987 AIME Problems/Problem 5|Solution]] | [[1987 AIME Problems/Problem 5|Solution]] | ||
== Problem 6 == | == Problem 6 == | ||
+ | Rectangle <math>\displaystyle ABCD</math> is divided into four parts of equal area by five segments as shown in the figure, where <math>\displaystyle XY = YB + BC + CZ = ZW = WD + DA + AX</math>, and <math>\displaystyle PQ</math> is parallel to <math>\displaystyle AB</math>. Find the length of <math>\displaystyle AB</math> (in cm) if <math>\displaystyle BC = 19</math> cm and <math>\displaystyle PQ = 87</math> cm. | ||
+ | |||
+ | [[Image:AIME_1987_Problem_6.png]] | ||
[[1987 AIME Problems/Problem 6|Solution]] | [[1987 AIME Problems/Problem 6|Solution]] | ||
== Problem 7 == | == Problem 7 == | ||
− | + | Let <math>\displaystyle [r,s]</math> denote the least common multiple of positive integers <math>\displaystyle r</math> and <math>\displaystyle s</math>. Find the number of ordered triples <math>\displaystyle (a,b,c)</math> of positive integers for which <math>\displaystyle [a,b] = 1000</math>, <math>\displaystyle [b,c] = 2000</math>, and <math>\displaystyle [c,a] = 2000</math>. | |
[[1987 AIME Problems/Problem 7|Solution]] | [[1987 AIME Problems/Problem 7|Solution]] | ||
== Problem 8 == | == Problem 8 == | ||
+ | What is the largest positive integer <math>\displaystyle n</math> for which there is a unique integer <math>\displaystyle k</math> such that <math>\displaystyle \frac{8}{15} < \frac{n}{n + k} < \frac{7}{13}</math>? | ||
[[1987 AIME Problems/Problem 8|Solution]] | [[1987 AIME Problems/Problem 8|Solution]] | ||
== Problem 9 == | == Problem 9 == | ||
+ | Triangle <math>\displaystyle ABC</math> has right angle at <math>\displaystyle B</math>, and contains a point <math>\displaystyle P</math> for which <math>\displaystyle PA = 10</math>, <math>\displaystyle PB = 6</math>, and <math>\displaystyle \angle APB = \angle BPC = \angle CPA</math>. Find <math>\displaystyle PC</math>. | ||
+ | |||
+ | [[Image:AIME_1987_Problem_9.png]] | ||
[[1987 AIME Problems/Problem 9|Solution]] | [[1987 AIME Problems/Problem 9|Solution]] | ||
== Problem 10 == | == Problem 10 == | ||
+ | Al walks down to the bottom of an escalator that is moving up and he counts 150 steps. His friend, Bob, walks up to the top of the escalator and counts 75 steps. If Al's speed of walking (in steps per unit time) is three times Bob's walking speed, how many steps are visible on the escalator at a given time? (Assume that this value is constant.) | ||
[[1987 AIME Problems/Problem 10|Solution]] | [[1987 AIME Problems/Problem 10|Solution]] | ||
== Problem 11 == | == Problem 11 == | ||
+ | Find the largest possible value of <math>\displaystyle k</math> for which <math>\displaystyle 3^{11}</math> is expressible as the sum of <math>\displaystyle k</math> consecutive positive integers. | ||
[[1987 AIME Problems/Problem 11|Solution]] | [[1987 AIME Problems/Problem 11|Solution]] | ||
== Problem 12 == | == Problem 12 == | ||
+ | Let <math>\displaystyle m</math> be the smallest integer whose cube root is of the form <math>\displaystyle n+r</math>, where <math>\displaystyle n</math> is a positive integer and <math>\displaystyle r</math> is a positive real number less than <math>\displaystyle 1/1000</math>. Find <math>\displaystyle n</math>. | ||
[[1987 AIME Problems/Problem 12|Solution]] | [[1987 AIME Problems/Problem 12|Solution]] | ||
== Problem 13 == | == Problem 13 == | ||
+ | A given sequence <math>\displaystyle r_1, r_2, \dots, r_n</math> of distinct real numbers can be put in ascending order by means of one or more "bubble passes". A bubble pass through a given sequence consists of comparing the second term with the first term, and exchanging them if and only if the second term is smaller, then comparing the third term with the second term and exchanging them if and only if the third term is smaller, and so on in order, through comparing the last term, <math>\displaystyle r_n</math>, with its current predecessor and exchanging them if and only if the last term is smaller. | ||
+ | |||
+ | The example below shows how the sequence 1, 9, 8, 7 is transformed into the sequence 1, 8, 7, 9 by one bubble pass. The numbers compared at each step are underlined. | ||
+ | <center><math>\underline{1 \quad 9} \quad 8 \quad 7</math></center> | ||
+ | <center><math>1 \quad {}\underline{9 \quad 8} \quad 7</math></center> | ||
+ | <center><math>1 \quad 8 \quad \underline{9 \quad 7}</math></center> | ||
+ | <center><math>1 \quad 8 \quad 7 \quad 9</math></center> | ||
+ | Suppose that <math>\displaystyle n = 40</math>, and that the terms of the initial sequence <math>\displaystyle r_1, r_2, \dots, r_{40}</math> are distinct from one another and are in random order. Let <math>\displaystyle p/q</math>, in lowest terms, be the probability that the number that begins as <math>\displaystyle r_{20}</math> will end up, after one bubble pass, in the <math>\displaystyle 30^{\mbox{th}}</math> place. Find <math>\displaystyle p + q</math>. | ||
[[1987 AIME Problems/Problem 13|Solution]] | [[1987 AIME Problems/Problem 13|Solution]] | ||
== Problem 14 == | == Problem 14 == | ||
+ | Compute | ||
+ | <center><math>\frac{(10^4+324)(22^4+324)(34^4+324)(46^4+324)(58^4+324)}{(4^4+324)(16^4+324)(28^4+324)(40^4+324)(52^4+324)}</math></center>. | ||
[[1987 AIME Problems/Problem 14|Solution]] | [[1987 AIME Problems/Problem 14|Solution]] | ||
== Problem 15 == | == Problem 15 == | ||
+ | Squares <math>\displaystyle S_1</math> and <math>\displaystyle S_2</math> are inscribed in right triangle <math>\displaystyle ABC</math>, as shown in the figures below. Find <math>\displaystyle AC + CB</math> if area <math>\displaystyle (S_1) = 441</math> and area <math>\displaystyle (S_2) = 440</math>. | ||
+ | |||
+ | [[Image:AIME_1987_Problem_15.png]] | ||
[[1987 AIME Problems/Problem 15|Solution]] | [[1987 AIME Problems/Problem 15|Solution]] |
Revision as of 00:14, 11 February 2007
Contents
Problem 1
An ordered pair of non-negative integers is called "simple" if the addition in base requires no carrying. Find the number of simple ordered pairs of non-negative integers that sum to .
Problem 2
What is the largest possible distance between two points, one on the sphere of radius 19 with center and the other on the sphere of radius 87 with center ?
Problem 3
By a proper divisior of a natural number we mean a positive integral divisor other than 1 and the number itself. A natural number greater than 1 will be called "nice" if it is equal to the product of its distinct proper divisors. What is the sum of the first ten nice numbers?
Problem 4
Find the area of the region enclosed by the graph of
Problem 5
Find if and are integers such that .
Problem 6
Rectangle is divided into four parts of equal area by five segments as shown in the figure, where , and is parallel to . Find the length of (in cm) if cm and cm.
Problem 7
Let denote the least common multiple of positive integers and . Find the number of ordered triples of positive integers for which , , and .
Problem 8
What is the largest positive integer for which there is a unique integer such that ?
Problem 9
Triangle has right angle at , and contains a point for which , , and . Find .
Problem 10
Al walks down to the bottom of an escalator that is moving up and he counts 150 steps. His friend, Bob, walks up to the top of the escalator and counts 75 steps. If Al's speed of walking (in steps per unit time) is three times Bob's walking speed, how many steps are visible on the escalator at a given time? (Assume that this value is constant.)
Problem 11
Find the largest possible value of for which is expressible as the sum of consecutive positive integers.
Problem 12
Let be the smallest integer whose cube root is of the form , where is a positive integer and is a positive real number less than . Find .
Problem 13
A given sequence of distinct real numbers can be put in ascending order by means of one or more "bubble passes". A bubble pass through a given sequence consists of comparing the second term with the first term, and exchanging them if and only if the second term is smaller, then comparing the third term with the second term and exchanging them if and only if the third term is smaller, and so on in order, through comparing the last term, , with its current predecessor and exchanging them if and only if the last term is smaller.
The example below shows how the sequence 1, 9, 8, 7 is transformed into the sequence 1, 8, 7, 9 by one bubble pass. The numbers compared at each step are underlined.
Suppose that , and that the terms of the initial sequence are distinct from one another and are in random order. Let , in lowest terms, be the probability that the number that begins as will end up, after one bubble pass, in the place. Find .
Problem 14
Compute
.
Problem 15
Squares and are inscribed in right triangle , as shown in the figures below. Find if area and area .