Difference between revisions of "2020 AMC 8 Problems/Problem 15"

(Solution 2)
(Solution 2)
Line 8: Line 8:
 
==Solution 2==
 
==Solution 2==
 
Letting <math>x=100</math>, our equation becomes <math>0.15\cdot 100 = 0.2\cdot y \implies 15 = \frac{y}{5} \implies y=75</math>. Clearly, <math>y</math> is <math>75\%</math> of <math>x</math> and the answer is <math>\boxed{\textbf{C}}</math>.<br>
 
Letting <math>x=100</math>, our equation becomes <math>0.15\cdot 100 = 0.2\cdot y \implies 15 = \frac{y}{5} \implies y=75</math>. Clearly, <math>y</math> is <math>75\%</math> of <math>x</math> and the answer is <math>\boxed{\textbf{C}}</math>.<br>
~jmansuri
+
~ junaidmansuri
  
 
==See also==
 
==See also==
 
{{AMC8 box|year=2020|num-b=14|num-a=16}}
 
{{AMC8 box|year=2020|num-b=14|num-a=16}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 06:27, 18 November 2020

Suppose $15\%$ of $x$ equals $20\%$ of $y.$ What percentage of $x$ is $y?$

$\textbf{(A) }5 \qquad \textbf{(B) }35 \qquad \textbf{(C) }75 \qquad \textbf{(D) }133 \frac13 \qquad \textbf{(E) }300$

Solution 1

Multiply by $5$ to get $0.75x=y$. The $0.75$ here can be converted to $75\%$. Therefore, $\boxed{\textbf{C}}$ is the answer.

Solution 2

Letting $x=100$, our equation becomes $0.15\cdot 100 = 0.2\cdot y \implies 15 = \frac{y}{5} \implies y=75$. Clearly, $y$ is $75\%$ of $x$ and the answer is $\boxed{\textbf{C}}$.
~ junaidmansuri

See also

2020 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 14
Followed by
Problem 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png