Difference between revisions of "2021 AMC 12B Problems/Problem 9"

(See Also)
Line 20: Line 20:
  
 
==See Also==
 
==See Also==
{{AMC12 box|year=2021|ab=B|num-b=11|num-a=13}}
+
{{AMC12 box|year=2021|ab=B|num-b=8|num-a=10}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 20:05, 11 February 2021

Problem

What is the value of\[\frac{\log_2 80}{\log_{40}2}-\frac{\log_2 160}{\log_{20}2}?\]$\textbf{(A) }0 \qquad \textbf{(B) }1 \qquad \textbf{(C) }\frac54 \qquad \textbf{(D) }2 \qquad \textbf{(E) }\log_2 5$

Solution

$\frac{\log_{2}{80}}{\log_{40}{2}}-\frac{\log_{2}{160}}{\log_{20}{2}}$

Note that $\log_{40}{2}=\frac{1}{\log_{2}{40}}$, and similarly $\log_{20}{2}=\frac{1}{\log_{2}{20}}$

$= \log_{2}{80}\cdot \log_{2}{40}-\log_{2}{160}\cdot log_{2}{20}$

$=(\log_{2}{4}+\log_{2}{20})(\log_{2}{2}+\log_{2}{20})-(\log_{2}{8}+\log_{2}{20})\log_{2}{20}$

$=(2+\log_{2}{20})(1+\log_{2}{20})-(3+\log_{2}{20})\log_{2}{20}$

Expanding, $2+2\log_{2}{20}+\log_{2}{20}+(\log_{2}{80})^2-3\log_{2}{20}-(\log_{2}{20})^2$

All the log terms cancel, so the answer is $2\implies\boxed{\text{(D)}}$.

~ SoySoy4444

See Also

2021 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 8
Followed by
Problem 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png