Difference between revisions of "2021 AMC 12B Problems/Problem 20"

(Solution)
Line 14: Line 14:
 
<cmath>R(z)\equiv F(z) \equiv -z\pmod{z^2+z+1}</cmath>
 
<cmath>R(z)\equiv F(z) \equiv -z\pmod{z^2+z+1}</cmath>
 
The answer is <math>\boxed{\textbf{(A) }-z}.</math>
 
The answer is <math>\boxed{\textbf{(A) }-z}.</math>
 +
 +
 +
== Video Solution by OmegaLearn (Using Modular Arithmetic and Meta-solving) ==
 +
https://youtu.be/nnjr17q7fS0
 +
 +
~ pi_is_3.14
  
 
==See Also==
 
==See Also==
 
{{AMC12 box|year=2021|ab=B|num-b=19|num-a=21}}
 
{{AMC12 box|year=2021|ab=B|num-b=19|num-a=21}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 21:45, 11 February 2021

Problem

Let $Q(z)$ and $R(z)$ be the unique polynomials such that\[z^{2021}+1=(z^2+z+1)Q(z)+R(z)\]and the degree of $R$ is less than $2.$ What is $R(z)?$

$\textbf{(A) }-z \qquad \textbf{(B) }-1 \qquad \textbf{(C) }2021\qquad \textbf{(D) }z+1 \qquad \textbf{(E) }2z+1$

Solution

Note that \[z^3-1\equiv 0\pmod{z^2+z+1}\] so if $F(z)$ is the remainder when dividing by $z^3-1$, \[F(z)\equiv R(z)\pmod{z^2+z+1}.\] Now, \[z^{2021}+1= (z^3-1)(z^{2018} + z^{2015} + \cdots + z^2) + z^2+1\] So $F(z) = z^2+1$, and \[R(z)\equiv F(z) \equiv -z\pmod{z^2+z+1}\] The answer is $\boxed{\textbf{(A) }-z}.$


Video Solution by OmegaLearn (Using Modular Arithmetic and Meta-solving)

https://youtu.be/nnjr17q7fS0

~ pi_is_3.14

See Also

2021 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 19
Followed by
Problem 21
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png