Difference between revisions of "2021 AMC 12B Problems/Problem 20"
Jamess2022 (talk | contribs) (→Solution 2 (Somewhat of a long method)) |
Jamess2022 (talk | contribs) (→Solution 2 (Somewhat of a long method)) |
||
Line 15: | Line 15: | ||
The answer is <math>\boxed{\textbf{(A) }-z}.</math> | The answer is <math>\boxed{\textbf{(A) }-z}.</math> | ||
− | ==Solution 2 ( | + | ==Solution 2 (Complex numbers)== |
One thing to note is that <math>R(z)</math> takes the form of <math>Az + B</math> for some constants A and B. | One thing to note is that <math>R(z)</math> takes the form of <math>Az + B</math> for some constants A and B. | ||
Note that the roots of <math>z^2 + z + 1</math> are part of the solutions of <math>z^3 -1 = 0</math> | Note that the roots of <math>z^2 + z + 1</math> are part of the solutions of <math>z^3 -1 = 0</math> |
Revision as of 10:39, 12 February 2021
Contents
[hide]Problem
Let and be the unique polynomials such thatand the degree of is less than What is
Solution 1
Note that so if is the remainder when dividing by , Now, So , and The answer is
Solution 2 (Complex numbers)
One thing to note is that takes the form of for some constants A and B. Note that the roots of are part of the solutions of They can be easily solved with roots of unity: Obviously the right two solutions are the roots of We substitute into the original equation, and becomes 0. Using De Moivre's theorem, we get: Expanding into rectangular complex number form: Comparing the real and imaginary parts, we get: The answer is . ~Jamess2022(burntTacos;-;)
Video Solution by OmegaLearn (Using Modular Arithmetic and Meta-solving)
~ pi_is_3.14
See Also
2021 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 19 |
Followed by Problem 21 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.