Difference between revisions of "2017 AIME II Problems/Problem 1"
Ironicninja (talk | contribs) (→Solution 4) |
Geometry285 (talk | contribs) m |
||
Line 4: | Line 4: | ||
==Solution 1== | ==Solution 1== | ||
The number of subsets of a set with <math>n</math> elements is <math>2^n</math>. The total number of subsets of <math>\{1, 2, 3, 4, 5, 6, 7, 8\}</math> is equal to <math>2^8</math>. The number of sets that are subsets of at least one of <math>\{1, 2, 3, 4, 5\}</math> or <math>\{4, 5, 6, 7, 8\}</math> can be found using complementary counting. There are <math>2^5</math> subsets of <math>\{1, 2, 3, 4, 5\}</math> and <math>2^5</math> subsets of <math>\{4, 5, 6, 7, 8\}</math>. It is easy to make the mistake of assuming there are <math>2^5+2^5</math> sets that are subsets of at least one of <math>\{1, 2, 3, 4, 5\}</math> or <math>\{4, 5, 6, 7, 8\}</math>, but the <math>2^2</math> subsets of <math>\{4, 5\}</math> are overcounted. There are <math>2^5+2^5-2^2</math> sets that are subsets of at least one of <math>\{1, 2, 3, 4, 5\}</math> or <math>\{4, 5, 6, 7, 8\}</math>, so there are <math>2^8-(2^5+2^5-2^2)</math> subsets of <math>\{1, 2, 3, 4, 5, 6, 7, 8\}</math> that are subsets of neither <math>\{1, 2, 3, 4, 5\}</math> nor <math>\{4, 5, 6, 7, 8\}</math>. <math>2^8-(2^5+2^5-2^2)=\boxed{196}</math>. | The number of subsets of a set with <math>n</math> elements is <math>2^n</math>. The total number of subsets of <math>\{1, 2, 3, 4, 5, 6, 7, 8\}</math> is equal to <math>2^8</math>. The number of sets that are subsets of at least one of <math>\{1, 2, 3, 4, 5\}</math> or <math>\{4, 5, 6, 7, 8\}</math> can be found using complementary counting. There are <math>2^5</math> subsets of <math>\{1, 2, 3, 4, 5\}</math> and <math>2^5</math> subsets of <math>\{4, 5, 6, 7, 8\}</math>. It is easy to make the mistake of assuming there are <math>2^5+2^5</math> sets that are subsets of at least one of <math>\{1, 2, 3, 4, 5\}</math> or <math>\{4, 5, 6, 7, 8\}</math>, but the <math>2^2</math> subsets of <math>\{4, 5\}</math> are overcounted. There are <math>2^5+2^5-2^2</math> sets that are subsets of at least one of <math>\{1, 2, 3, 4, 5\}</math> or <math>\{4, 5, 6, 7, 8\}</math>, so there are <math>2^8-(2^5+2^5-2^2)</math> subsets of <math>\{1, 2, 3, 4, 5, 6, 7, 8\}</math> that are subsets of neither <math>\{1, 2, 3, 4, 5\}</math> nor <math>\{4, 5, 6, 7, 8\}</math>. <math>2^8-(2^5+2^5-2^2)=\boxed{196}</math>. | ||
+ | |||
+ | ==Solution 1.1 ( PIE Simplified )== | ||
+ | Note that by Principle of Inclusion and Exclusion, the total number of subsets must be <math>2^8-2^5-2^5+2^2</math> as denoted by above. Thus our answer is <math>64(3)+4 = \boxed{196}</math> | ||
==Solution 2== | ==Solution 2== |
Revision as of 11:13, 30 April 2021
Contents
Problem
Find the number of subsets of that are subsets of neither nor .
Solution 1
The number of subsets of a set with elements is . The total number of subsets of is equal to . The number of sets that are subsets of at least one of or can be found using complementary counting. There are subsets of and subsets of . It is easy to make the mistake of assuming there are sets that are subsets of at least one of or , but the subsets of are overcounted. There are sets that are subsets of at least one of or , so there are subsets of that are subsets of neither nor . .
Solution 1.1 ( PIE Simplified )
Note that by Principle of Inclusion and Exclusion, the total number of subsets must be as denoted by above. Thus our answer is
Solution 2
Upon inspection, a viable set must contain at least one element from both of the sets and . Since 4 and 5 are included in both of these sets, then they basically don't matter, i.e. if set A is a subset of both of those two then adding a 4 or a 5 won't change that fact. Thus, we can count the number of ways to choose at least one number from 1 to 3 and at least one number from 6 to 8, and then multiply that by the number of ways to add in 4 and 5. The number of subsets of a 3 element set is , but we want to exclude the empty set, giving us 7 ways to choose from or . We can take each of these sets and add in a 4 and/or a 5, which can be done in 4 different ways (by adding both, none, one, or the other one). Thus, the answer is .
Solution 3
This solution is very similar to Solution . The set of all subsets of that are disjoint with respect to and are not disjoint with respect to the complements of sets (and therefore not a subset of) and will be named , which has members. The union of each member in and the subsets of will be the members of set , which has members.
Solution by a1b2
Solution 4
Consider that we are trying to figure out how many subsets are possible of that are not in violation of the two subsets and . Assume that the number of numbers we pick from the subset is . Thus, we can compute this problem with simple combinatorics:
If , ( + ) [subtract to eliminate the overcounting of the subset or ] = =
If , ( + ) [subtract to eliminate the overcounting of the subset ] = =
If , ( + ) = =
If , ( + ) = =
If , ( + ) = =
If , then the set is never in violation of the two subsets and . Thus,
If , =
If , =
If , =
Adding these together, our solution becomes + + + + + + +
Solution by IronicNinja~
See Also
2017 AIME II (Problems • Answer Key • Resources) | ||
Preceded by First Problem |
Followed by Problem 2 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.