Difference between revisions of "1972 AHSME Problems/Problem 18"

(3 \frac{2}{3})
 
Line 1: Line 1:
 +
==Problem==
 +
Let <math>ABCD</math> be a trapezoid with the measure of base <math>AB</math> twice that of base <math>DC</math>, and let <math>E</math> be the point of intersection of the diagonals. If the measure of diagonal <math>AC</math> is <math>11</math>, then that of segment <math>EC</math> is equal to
  
 +
<math>\textbf{(A) }3\textstyle\frac{2}{3}\qquad \textbf{(B) }3\frac{3}{4}\qquad \textbf{(C) }4\qquad \textbf{(D) }3\frac{1}{2}\qquad \textbf{(E) }3</math>
 +
==Solution==
 +
<math>\fbox{E}</math>

Revision as of 21:41, 22 June 2021

Problem

Let $ABCD$ be a trapezoid with the measure of base $AB$ twice that of base $DC$, and let $E$ be the point of intersection of the diagonals. If the measure of diagonal $AC$ is $11$, then that of segment $EC$ is equal to

$\textbf{(A) }3\textstyle\frac{2}{3}\qquad \textbf{(B) }3\frac{3}{4}\qquad \textbf{(C) }4\qquad \textbf{(D) }3\frac{1}{2}\qquad \textbf{(E) }3$

Solution

$\fbox{E}$