Difference between revisions of "2012 AMC 10A Problems/Problem 4"
(→Problem) |
(→Problem) |
||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
− | Let <math>\angle ABC = 24^\circ </math> and <math>\angle ABD = 20^\circ </math>. What is the smallest possible degree measure for angle CBD? | + | Let <math>\angle ABC = 24^\circ </math> and <math>\angle ABD = 20^\circ </math>. What is the smallest possible degree measure for <math>\angle CBD</math>? |
<math> \textbf{(A)}\ 0\qquad\textbf{(B)}\ 2\qquad\textbf{(C)}\ 4\qquad\textbf{(D)}\ 6\qquad\textbf{(E)}\ 12 </math> | <math> \textbf{(A)}\ 0\qquad\textbf{(B)}\ 2\qquad\textbf{(C)}\ 4\qquad\textbf{(D)}\ 6\qquad\textbf{(E)}\ 12 </math> |
Revision as of 14:03, 13 July 2021
Problem
Let and . What is the smallest possible degree measure for ?
Solution
and share ray . In order to minimize the value of , should be located between and .
, so . The answer is
See Also
2012 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 3 |
Followed by Problem 5 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.