Difference between revisions of "2020 AMC 10A Problems/Problem 3"

(I will clean up this page and consider some of the edits.)
(Deleted original Sol 2 as it is repetitive. Maintained the solution by answer choices, as that's a last resort. Let me know if you disagree with this edit.)
Line 5: Line 5:
 
<math>\textbf{(A) } -1 \qquad \textbf{(B) } 1 \qquad \textbf{(C) } \frac{abc}{60} \qquad \textbf{(D) } \frac{1}{abc} - \frac{1}{60} \qquad \textbf{(E) } \frac{1}{60} - \frac{1}{abc}</math>
 
<math>\textbf{(A) } -1 \qquad \textbf{(B) } 1 \qquad \textbf{(C) } \frac{abc}{60} \qquad \textbf{(D) } \frac{1}{abc} - \frac{1}{60} \qquad \textbf{(E) } \frac{1}{60} - \frac{1}{abc}</math>
  
== Solution 1 ==
+
== Solution 1 (Negatives) ==
 
If <math>x\neq y,</math> then <math>\frac{x-y}{y-x}=-1.</math> We use this fact to simplify the original expression:
 
If <math>x\neq y,</math> then <math>\frac{x-y}{y-x}=-1.</math> We use this fact to simplify the original expression:
 
<cmath>\frac{\color{red}\overset{-1}{\cancel{a-3}}}{\color{blue}\underset{1}{\cancel{5-c}}} \cdot \frac{\color{green}\overset{-1}{\cancel{b-4}}}{\color{red}\underset{1}{\cancel{3-a}}} \cdot \frac{\color{blue}\overset{-1}{\cancel{c-5}}}{\color{green}\underset{1}{\cancel{4-b}}}=(-1)(-1)(-1)=\boxed{\textbf{(A) } -1}.</cmath>
 
<cmath>\frac{\color{red}\overset{-1}{\cancel{a-3}}}{\color{blue}\underset{1}{\cancel{5-c}}} \cdot \frac{\color{green}\overset{-1}{\cancel{b-4}}}{\color{red}\underset{1}{\cancel{3-a}}} \cdot \frac{\color{blue}\overset{-1}{\cancel{c-5}}}{\color{green}\underset{1}{\cancel{4-b}}}=(-1)(-1)(-1)=\boxed{\textbf{(A) } -1}.</cmath>
~CoolJupiter (Solution)
+
~CoolJupiter ~MRENTHUSIASM
  
~MRENTHUSIASM (<math>\LaTeX</math> Adjustments)
+
== Solution 2 (Answer Choices) ==
 
 
== Solution 2 ==
 
Note that <math>a-3</math> is <math>-1</math> times <math>3-a.</math> Likewise, <math>b-4</math> is <math>-1</math> times <math>4-b</math> and <math>c-5</math> is <math>-1</math> times <math>5-c.</math> Therefore, the product of the given fraction equals <math>(-1)(-1)(-1)=\boxed{\textbf{(A) } -1}.</math>
 
 
 
== Solution 3 ==
 
 
At <math>(a,b,c)=(4,5,6),</math> the answer choices become
 
At <math>(a,b,c)=(4,5,6),</math> the answer choices become
  

Revision as of 18:29, 4 November 2021

Problem

Assuming $a\neq3$, $b\neq4$, and $c\neq5$, what is the value in simplest form of the following expression? \[\frac{a-3}{5-c} \cdot \frac{b-4}{3-a} \cdot \frac{c-5}{4-b}\]

$\textbf{(A) } -1 \qquad \textbf{(B) } 1 \qquad \textbf{(C) } \frac{abc}{60} \qquad \textbf{(D) } \frac{1}{abc} - \frac{1}{60} \qquad \textbf{(E) } \frac{1}{60} - \frac{1}{abc}$

Solution 1 (Negatives)

If $x\neq y,$ then $\frac{x-y}{y-x}=-1.$ We use this fact to simplify the original expression: \[\frac{\color{red}\overset{-1}{\cancel{a-3}}}{\color{blue}\underset{1}{\cancel{5-c}}} \cdot \frac{\color{green}\overset{-1}{\cancel{b-4}}}{\color{red}\underset{1}{\cancel{3-a}}} \cdot \frac{\color{blue}\overset{-1}{\cancel{c-5}}}{\color{green}\underset{1}{\cancel{4-b}}}=(-1)(-1)(-1)=\boxed{\textbf{(A) } -1}.\] ~CoolJupiter ~MRENTHUSIASM

Solution 2 (Answer Choices)

At $(a,b,c)=(4,5,6),$ the answer choices become

$\textbf{(A) } -1 \qquad \textbf{(B) } 1 \qquad \textbf{(C) } 2 \qquad \textbf{(D) } -\frac{1}{120} \qquad \textbf{(E) } \frac{1}{120}$

and the original expression becomes \[\frac{-1}{1}\cdot\frac{-1}{1}\cdot\frac{-1}{1}=\boxed{\textbf{(A) } -1}.\] ~MRENTHUSIASM

Video Solution 1

https://youtu.be/WUcbVNy2uv0

~IceMatrix

Video Solution 2

https://youtu.be/Nrdxe4UAqkA

Education, The Study of Everything

Video Solution 3

https://www.youtube.com/watch?v=7-3sl1pSojc

~bobthefam

Video Solution 4

https://youtu.be/ZccL6yKrTiU

~savannahsolver

Video Solution 5

https://youtu.be/ba6w1OhXqOQ?t=956

~ pi_is_3.14

See Also

2020 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 2
Followed by
Problem 4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png