Difference between revisions of "2021 Fall AMC 10A Problems/Problem 15"
(→Solution 2 (Similar Triangles)) |
|||
Line 3: | Line 3: | ||
<math>\textbf{(A) }24\pi\qquad\textbf{(B) }25\pi\qquad\textbf{(C) }26\pi\qquad\textbf{(D) }27\pi\qquad\textbf{(E) }28\pi</math> | <math>\textbf{(A) }24\pi\qquad\textbf{(B) }25\pi\qquad\textbf{(C) }26\pi\qquad\textbf{(D) }27\pi\qquad\textbf{(E) }28\pi</math> | ||
− | ==Solution 1 | + | ==Solution 1 (Similar Triangles)== |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
<asy> | <asy> | ||
Line 68: | Line 61: | ||
~KingRavi | ~KingRavi | ||
+ | |||
+ | ==Solution 2 (Geometric Assumption)== | ||
+ | Let the center of the first circle be <math>O.</math> By Pythagorean Theorem, | ||
+ | <cmath>AO=\sqrt{(3\sqrt{6})^2+(5\sqrt{2})^2}=2 \sqrt{26}</cmath> | ||
+ | Now, notice that since <math>\angle ABO</math> is <math>90</math> degrees, so arc <math>AO</math> is <math>180</math> degrees and <math>AO</math> is the diameter. Thus, the radius is <math>\sqrt{26},</math> so the area is <math>\boxed{26\pi}.</math> | ||
+ | |||
+ | - kante314 | ||
==See Also== | ==See Also== | ||
{{AMC10 box|year=2021 Fall|ab=A|num-b=14|num-a=16}} | {{AMC10 box|year=2021 Fall|ab=A|num-b=14|num-a=16}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 01:12, 24 November 2021
Isosceles triangle has , and a circle with radius is tangent to line at and to line at . What is the area of the circle that passes through vertices , , and
Solution 1 (Similar Triangles)
Because circle is tangent to at . Because O is the circumcenter of is the perpendicular bisector of , and , so therefore by AA similarity. Then we have . We also know that because of the perpendicular bisector, so the hypotenuse of .
This is the radius of the circumcircle of , so the area of this circle is
Solution in Progress
~KingRavi
Solution 2 (Geometric Assumption)
Let the center of the first circle be By Pythagorean Theorem, Now, notice that since is degrees, so arc is degrees and is the diameter. Thus, the radius is so the area is
- kante314
See Also
2021 Fall AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 14 |
Followed by Problem 16 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.