Difference between revisions of "2021 Fall AMC 10A Problems/Problem 8"

m (Problem)
Line 4: Line 4:
 
<math>\textbf{(A) }0\qquad\textbf{(B) }1\qquad\textbf{(C) }2\qquad\textbf{(D) }3\qquad\textbf{(E) }4</math>
 
<math>\textbf{(A) }0\qquad\textbf{(B) }1\qquad\textbf{(C) }2\qquad\textbf{(D) }3\qquad\textbf{(E) }4</math>
  
== Solution ==
+
== Solution 1 ==
 
Note that the number <math>\underline{xy} = 10x + y.</math> By the problem statement, <cmath>10x + y = x + y^2 \implies 9x = y^2 - y \implies 9x = y(y-1).</cmath> From this we see that <math>y(y-1)</math> must be divisible by <math>9.</math> This only happens when <math>y=9.</math> Then, <math>x=8.</math> Thus, there is only <math>\boxed{\textbf{(B) }1}</math> cuddly number, which is <math>89.</math>
 
Note that the number <math>\underline{xy} = 10x + y.</math> By the problem statement, <cmath>10x + y = x + y^2 \implies 9x = y^2 - y \implies 9x = y(y-1).</cmath> From this we see that <math>y(y-1)</math> must be divisible by <math>9.</math> This only happens when <math>y=9.</math> Then, <math>x=8.</math> Thus, there is only <math>\boxed{\textbf{(B) }1}</math> cuddly number, which is <math>89.</math>
  
 
~NH14
 
~NH14
 +
 +
== Solution 2 ==
 +
Denote this number as <math>\overline{ab}</math>.
 +
 +
Hence, we have <math>\overline{ab} = a + b^2</math>.
 +
 +
This can be written as <math>10 a + b = a + b^2</math>.
 +
 +
Hence, <math>b \left( b - 1 \right) = 9 a</math>.
 +
This implies <math>9 | b \left( b - 1 \right)</math>.
 +
 +
Hence, either <math>9 | b</math> or <math>9 | b - 1</math>.
 +
Because <math>b \in \left\{ 0 , 1 , \cdots , 9 \right\}</math>, <math>b = 9</math> or 1.
 +
 +
For <math>b = 9</math>, we get <math>a = 8</math>. This is a solution.
 +
 +
For <math>b = 1</math>, we get <math>a = 0</math>. However, recall that <math>a \neq 0</math>.
 +
Hence, this is not a solution.
 +
 +
Therefore, the answer is <math>\boxed{\textbf{(B) }1}</math>.
 +
 +
~Steven Chen (www.professorchenedu.com)
 +
  
 
==See Also==
 
==See Also==
 
{{AMC10 box|year=2021 Fall|ab=A|num-b=7|num-a=9}}
 
{{AMC10 box|year=2021 Fall|ab=A|num-b=7|num-a=9}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 20:02, 25 November 2021

Problem

A two-digit positive integer is said to be $\emph{cuddly}$ if it is equal to the sum of its nonzero tens digit and the square of its units digit. How many two-digit positive integers are cuddly?

$\textbf{(A) }0\qquad\textbf{(B) }1\qquad\textbf{(C) }2\qquad\textbf{(D) }3\qquad\textbf{(E) }4$

Solution 1

Note that the number $\underline{xy} = 10x + y.$ By the problem statement, \[10x + y = x + y^2 \implies 9x = y^2 - y \implies 9x = y(y-1).\] From this we see that $y(y-1)$ must be divisible by $9.$ This only happens when $y=9.$ Then, $x=8.$ Thus, there is only $\boxed{\textbf{(B) }1}$ cuddly number, which is $89.$

~NH14

Solution 2

Denote this number as $\overline{ab}$.

Hence, we have $\overline{ab} = a + b^2$.

This can be written as $10 a + b = a + b^2$.

Hence, $b \left( b - 1 \right) = 9 a$. This implies $9 | b \left( b - 1 \right)$.

Hence, either $9 | b$ or $9 | b - 1$. Because $b \in \left\{ 0 , 1 , \cdots , 9 \right\}$, $b = 9$ or 1.

For $b = 9$, we get $a = 8$. This is a solution.

For $b = 1$, we get $a = 0$. However, recall that $a \neq 0$. Hence, this is not a solution.

Therefore, the answer is $\boxed{\textbf{(B) }1}$.

~Steven Chen (www.professorchenedu.com)


See Also

2021 Fall AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 7
Followed by
Problem 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png