Difference between revisions of "Trivial Inequality"
m (→Statement) |
Etmetalakret (talk | contribs) m |
||
Line 30: | Line 30: | ||
*Let <math>c</math> be the length of the [[hypotenuse]] of a [[right triangle]] whose two other sides have lengths <math>a</math> and <math>b</math>. Prove that <math>a+b\le c\sqrt{2}</math>. When does the equality hold? ([[1969 Canadian MO Problems/Problem 3|1969 Canadian MO]]) | *Let <math>c</math> be the length of the [[hypotenuse]] of a [[right triangle]] whose two other sides have lengths <math>a</math> and <math>b</math>. Prove that <math>a+b\le c\sqrt{2}</math>. When does the equality hold? ([[1969 Canadian MO Problems/Problem 3|1969 Canadian MO]]) | ||
− | [[Category: | + | [[Category:Algebra]] |
− | [[Category: | + | [[Category:Inequalities]] |
Revision as of 15:57, 29 December 2021
The trivial inequality is an inequality that states that the square of any real number is nonnegative. Its name comes from its simplicity and straightforwardness.
Contents
[hide]Statement
For all real numbers , .
Proof
We can have either , , or . If , then . If , then by the closure of the set of positive numbers under multiplication. Finally, if , then again by the closure of the set of positive numbers under multiplication.
Therefore, for all real , as claimed.
Applications
The trivial inequality is one of the most commonly used theorems in mathematics. It is very well-known and does not require proof.
One application is maximizing and minimizing quadratic functions. It gives an easy proof of the two-variable case of the Arithmetic Mean-Geometric Mean inequality:
Suppose that and are nonnegative reals. By the trivial inequality, we have , or . Adding to both sides, we get . Since both sides of the inequality are nonnegative, it is equivalent to , and thus we have as desired.
Problems
Introductory
- Find all integer solutions of the equation .
- Show that . Solution
- Show that for all real .
Intermediate
- Triangle has and . What is the largest area that this triangle can have? (AIME 1992)
Olympiad
- Let be the length of the hypotenuse of a right triangle whose two other sides have lengths and . Prove that . When does the equality hold? (1969 Canadian MO)