Difference between revisions of "2005 AMC 8 Problems/Problem 23"

m (Easier and More Logical Solution)
Line 15: Line 15:
 
==Solution==
 
==Solution==
 
First, we notice half a square so first let's create a square. Once we have a square, we will have a full circle. This circle has a diameter of 4 which will be the side of the square. The area would be 4*4 = 16. Divide 16 by 2 to get the original shape and you get <math>\boxed{8}</math>
 
First, we notice half a square so first let's create a square. Once we have a square, we will have a full circle. This circle has a diameter of 4 which will be the side of the square. The area would be 4*4 = 16. Divide 16 by 2 to get the original shape and you get <math>\boxed{8}</math>
 +
 +
==Video Solution==
 +
https://youtu.be/PvNpudgB8LI Soo, DRMS, NM
  
 
==See Also==
 
==See Also==
 
{{AMC8 box|year=2005|num-b=22|num-a=24}}
 
{{AMC8 box|year=2005|num-b=22|num-a=24}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 21:49, 25 March 2022

Problem

Isosceles right triangle $ABC$ encloses a semicircle of area $2\pi$. The circle has its center $O$ on hypotenuse $\overline{AB}$ and is tangent to sides $\overline{AC}$ and $\overline{BC}$. What is the area of triangle $ABC$?

[asy]pair a=(4,4), b=(0,0), c=(0,4), d=(4,0), o=(2,2); draw(circle(o, 2)); clip(a--b--c--cycle); draw(a--b--c--cycle); dot(o); label("$C$", c, NW); label("$A$", a, NE); label("$B$", b, SW);[/asy]

$\textbf{(A)}\ 6\qquad\textbf{(B)}\ 8\qquad\textbf{(C)}\ 3\pi\qquad\textbf{(D)}\ 10\qquad\textbf{(E)}\ 4\pi$

Solution

First, we notice half a square so first let's create a square. Once we have a square, we will have a full circle. This circle has a diameter of 4 which will be the side of the square. The area would be 4*4 = 16. Divide 16 by 2 to get the original shape and you get $\boxed{8}$

Video Solution

https://youtu.be/PvNpudgB8LI Soo, DRMS, NM

See Also

2005 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 22
Followed by
Problem 24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png