Difference between revisions of "2011 AMC 10B Problems/Problem 10"

(Solution 2)
(Solution 2)
Line 12: Line 12:
 
== Solution 2 ==
 
== Solution 2 ==
 
The problem asks for the value of <cmath>\dfrac{10^{10}}{10^9 + 10^8 + \ldots + 10 + 1}.</cmath> Written in base 10, we can find the value of <math>10^9 + 10^8 + \ldots + 10 + 1</math> to be <math>1111111111.</math> Long division gives us the answer to be <math>\boxed{\mathrm{(B) \ } 9}.</math>
 
The problem asks for the value of <cmath>\dfrac{10^{10}}{10^9 + 10^8 + \ldots + 10 + 1}.</cmath> Written in base 10, we can find the value of <math>10^9 + 10^8 + \ldots + 10 + 1</math> to be <math>1111111111.</math> Long division gives us the answer to be <math>\boxed{\mathrm{(B) \ } 9}.</math>
 +
 +
Alternate finish: multiply the denominator by 9 and notice that it is 1 less than <math>10^{10}</math>. So the answer is very very close to <math>\boxed{\mathrm{(B) } 9}</math>.
 +
 +
~JH. L
  
 
== See Also==
 
== See Also==

Revision as of 04:40, 25 June 2022

Problem

Consider the set of numbers $\{1, 10, 10^2, 10^3, \ldots, 10^{10}\}$. The ratio of the largest element of the set to the sum of the other ten elements of the set is closest to which integer?

$\textbf{(A)}\ 1 \qquad\textbf{(B)}\ 9 \qquad\textbf{(C)}\ 10 \qquad\textbf{(D)}\ 11 \qquad\textbf{(E)} 101$

Solution 1

The requested ratio is \[\dfrac{10^{10}}{10^9 + 10^8 + \ldots + 10 + 1}.\] Using the formula for a geometric series, we have \[10^9 + 10^8 + \ldots + 10 + 1 = \dfrac{10^{10} - 1}{10 - 1} = \dfrac{10^{10} - 1}{9},\] which is very close to $\dfrac{10^{10}}{9},$ so the ratio is very close to $\boxed{\mathrm{(B) \ } 9}.$


Solution 2

The problem asks for the value of \[\dfrac{10^{10}}{10^9 + 10^8 + \ldots + 10 + 1}.\] Written in base 10, we can find the value of $10^9 + 10^8 + \ldots + 10 + 1$ to be $1111111111.$ Long division gives us the answer to be $\boxed{\mathrm{(B) \ } 9}.$

Alternate finish: multiply the denominator by 9 and notice that it is 1 less than $10^{10}$. So the answer is very very close to $\boxed{\mathrm{(B) } 9}$.

~JH. L

See Also

2011 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 9
Followed by
Problem 11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png