Difference between revisions of "Quartic Equation"
m (→External Links) |
m (I don't think the "roots rewritten" subsection is necessary.) |
||
Line 22: | Line 22: | ||
Now we have a depressed quartic: <math>y^4 + py^2 + qy + r = 0</math> where <math>p = \left(\frac{8ac - 3b^2}{8a^2}\right)</math>, <math>q = \left(\frac{b^3 - 4abc + 8a^2d}{8a^3}\right)</math> and <math>r = \left(\frac{-3b^4 + 16ab^2c - 64a^2bd + 256a^3e}{256a^4}\right)</math>. | Now we have a depressed quartic: <math>y^4 + py^2 + qy + r = 0</math> where <math>p = \left(\frac{8ac - 3b^2}{8a^2}\right)</math>, <math>q = \left(\frac{b^3 - 4abc + 8a^2d}{8a^3}\right)</math> and <math>r = \left(\frac{-3b^4 + 16ab^2c - 64a^2bd + 256a^3e}{256a^4}\right)</math>. | ||
− | ====TLDR | + | ====TLDR==== |
The new depressed quartic is | The new depressed quartic is | ||
Line 60: | Line 60: | ||
Now that both factors have been obtained, we can solve for <math>y</math> by using the [[quadratic formula]] on each of the factors. The two solutions for the quadratics combined form the four solutions of the depressed quartic; subtract <math>\frac{b}{4a}</math> to each of the solutions to obtain the solutions to the original quartic. | Now that both factors have been obtained, we can solve for <math>y</math> by using the [[quadratic formula]] on each of the factors. The two solutions for the quadratics combined form the four solutions of the depressed quartic; subtract <math>\frac{b}{4a}</math> to each of the solutions to obtain the solutions to the original quartic. | ||
− | ====TLDR | + | ====TLDR==== |
<math>U</math> is a nonzero solution to the cubic <math>U^3 + 2pU^2 + (p^2 - 4r)U - q^2, u = \sqrt{U}, s = -u, t = \frac{u^3 + pu + q}{2u}, v = t - \frac{q}{u}</math> (or subtract the two equations to obtain <math>v = \frac{u^3 + pu - q}{2u}</math>). The solutions to the depressed quartic are <math>\frac{-u \pm \sqrt{u^2 - 4v}}{2} \text{ and } \frac{-s \pm \sqrt{s^2 - 4t}}{2},</math> | <math>U</math> is a nonzero solution to the cubic <math>U^3 + 2pU^2 + (p^2 - 4r)U - q^2, u = \sqrt{U}, s = -u, t = \frac{u^3 + pu + q}{2u}, v = t - \frac{q}{u}</math> (or subtract the two equations to obtain <math>v = \frac{u^3 + pu - q}{2u}</math>). The solutions to the depressed quartic are <math>\frac{-u \pm \sqrt{u^2 - 4v}}{2} \text{ and } \frac{-s \pm \sqrt{s^2 - 4t}}{2},</math> | ||
subtract <math>\frac{b}{4a}</math> from each of the roots to obtain the roots of the original quartic. | subtract <math>\frac{b}{4a}</math> from each of the roots to obtain the roots of the original quartic. | ||
− | |||
− | |||
− | |||
==The Quartic Formula== | ==The Quartic Formula== |
Revision as of 08:29, 23 August 2022
A quartic equation is an algebraic equation of the form
These types of equations are extremely hard to solve; however, there are very clever methods for solving them by bringing it down to a cubic. I am going to list the simplest of the five.
Contents
Solving Quartic Equations
Look in the "TLDR" subsections for the final results of each step.
Bringing it down to a depressed quartic
Start with the equation Divide both sides by a: Now, convert to a depressed quartic by substituting . We now have:
Now we have a depressed quartic: where , and .
TLDR
The new depressed quartic is where , and .
Descartes' Solution
René Descartes thought of factoring the depressed quartic into two quadratics: . Expanding the right-hand side gives , simplifying to . Equating coefficients gives the following system of equations:
from which we derive and substitute this:
Now eliminate and by doing the following:
Substitute to get
This can be solved via the cubic formula. After is obtained, we have and can now solve for and :
Solve for t and v
We have the system of equations . We can obtain and . Similarly, .
Now that both factors have been obtained, we can solve for by using the quadratic formula on each of the factors. The two solutions for the quadratics combined form the four solutions of the depressed quartic; subtract to each of the solutions to obtain the solutions to the original quartic.
TLDR
is a nonzero solution to the cubic (or subtract the two equations to obtain ). The solutions to the depressed quartic are subtract from each of the roots to obtain the roots of the original quartic.
The Quartic Formula
Be prepared: This formula is really complicated.
I also don't suggest memorizing this formula, since it is too complex to do so. Even if you can, it is very hard to use. You should be better off if you follow the process and break everything into easy steps.
We are going to keep using in the derivation; we are going to substitute them into the final formula.
So, we start with .
We factor it into two quadratics: .
We have obtained . With being a solution to , , according to the cubic formula,
Already messy. Therefore,
Then we substitute each of the s for those rather large expressions and simplify.
External Links
Quora: https://www.quora.com/What-is-the-general-formula-for-quartic-equation