Difference between revisions of "2016 AMC 10A Problems/Problem 23"
Countmath1 (talk | contribs) (→Solution 4 (Proving that \diamondsuit is division)) |
Countmath1 (talk | contribs) (→Solution 4 (Proving that \diamondsuit is division)) |
||
Line 33: | Line 33: | ||
Therefore, <math>x = \frac{600}{2016} = \frac{25}{84}</math>, so the answer is <math>25 + 84 = \boxed{\textbf{(A) }109.}</math> | Therefore, <math>x = \frac{600}{2016} = \frac{25}{84}</math>, so the answer is <math>25 + 84 = \boxed{\textbf{(A) }109.}</math> | ||
− | == Solution 4 | + | ===Solution 4=== |
− | |||
− | + | We can manipulate the given identities to arrive at a conclusion about the binary operator <math>\diamondsuit</math>. Substituting <math>b = c</math> into the first identity yields <cmath>( a\ \diamondsuit\ b) \cdot b = a\ \diamondsuit\ (b\ \diamondsuit\ b) = a\ \diamondsuit\ 1 = a\ \diamondsuit\ ( a\ \diamondsuit\ a) = ( a\ \diamondsuit\ a) \cdot a = a.</cmath> Hence, <math>( a\ \diamondsuit\ b) \cdot b = a,</math> or, dividing both sides of the equation by <math>b,</math> <math>( a\ \diamondsuit\ b) = \frac{a}{b}.</math> | |
− | + | Hence, the given equation becomes <math>\frac{2016}{\frac{6}{x}} = 100</math>. Solving yields <math>x=\frac{100}{336} = \frac{25}{84},</math> so the answer is <math>25 + 84 = \boxed{\textbf{(A) }109.}</math> | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
== Video Solution 1== | == Video Solution 1== |
Revision as of 14:30, 8 October 2022
Contents
Problem
A binary operation has the properties that and that for all nonzero real numbers and . (Here represents multiplication). The solution to the equation can be written as , where and are relatively prime positive integers. What is
Solutions
Solution 1
We see that , and think of division. Testing, we see that the first condition is satisfied, because . Therefore, division can be the operation . Solving the equation, so the answer is .
Solution 2
We can manipulate the given identities to arrive at a conclusion about the binary operator . Substituting into the first identity yields Hence, or, dividing both sides of the equation by
Hence, the given equation becomes . Solving yields so the answer is
Solution 3
One way to eliminate the in this equation is to make so that . In this case, we can make .
By multiplying both sides by , we get:
Because
Therefore, , so the answer is
Solution 4
We can manipulate the given identities to arrive at a conclusion about the binary operator . Substituting into the first identity yields Hence, or, dividing both sides of the equation by
Hence, the given equation becomes . Solving yields so the answer is
Video Solution 1
https://www.youtube.com/watch?v=8GULAMwu5oE
Video Solution 2(Meta-Solving Technique)
https://youtu.be/GmUWIXXf_uk?t=1632
~ pi_is_3.14
See Also
2016 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 22 |
Followed by Problem 24 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
2016 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 19 |
Followed by Problem 21 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.