Difference between revisions of "2005 AMC 10B Problems/Problem 21"

(Solution 2 (order does not matter))
Line 3: Line 3:
  
 
<math>\textbf{(A) } 162 \qquad \textbf{(B) } 180 \qquad \textbf{(C) } 324 \qquad \textbf{(D) } 360 \qquad \textbf{(E) } 720 </math>
 
<math>\textbf{(A) } 162 \qquad \textbf{(B) } 180 \qquad \textbf{(C) } 324 \qquad \textbf{(D) } 360 \qquad \textbf{(E) } 720 </math>
 
== Video Solution ==
 
https://youtu.be/wopflrvUN2c?t=252
 
 
~ pi_is_3.14
 
  
 
== Solution 1 (where the order of drawing slips matters) ==
 
== Solution 1 (where the order of drawing slips matters) ==
Line 27: Line 22:
  
 
Hence, <math>\frac{q}{p}=\frac{45\cdot6\cdot6}{10}=9\cdot6\cdot3=\boxed{\textbf{(A) }162}</math>.
 
Hence, <math>\frac{q}{p}=\frac{45\cdot6\cdot6}{10}=9\cdot6\cdot3=\boxed{\textbf{(A) }162}</math>.
 +
 +
== Video Solution ==
 +
https://youtu.be/wopflrvUN2c?t=252
 +
 +
~ pi_is_3.14
  
 
==See Also==
 
==See Also==

Revision as of 23:34, 26 October 2022

Problem

Forty slips are placed into a hat, each bearing a number $1$, $2$, $3$, $4$, $5$, $6$, $7$, $8$, $9$, or $10$, with each number entered on four slips. Four slips are drawn from the hat at random and without replacement. Let $p$ be the probability that all four slips bear the same number. Let $q$ be the probability that two of the slips bear a number $a$ and the other two bear a number $b \neq a$. What is the value of $q/p$?

$\textbf{(A) } 162 \qquad \textbf{(B) } 180 \qquad \textbf{(C) } 324 \qquad \textbf{(D) } 360 \qquad \textbf{(E) } 720$

Solution 1 (where the order of drawing slips matters)

There are $10$ ways to determine which number to pick. There are $4!$ ways to then draw those four slips with that number, and $40 \cdot 39 \cdot 38 \cdot 37$ total ways to draw four slips. Thus $p = \frac{10\cdot 4!}{40 \cdot 39 \cdot 38 \cdot 37}$.

There are ${10 \choose 2} = 45$ ways to determine which two numbers to pick for the second probability. There are ${4 \choose 2} = 6$ ways to arrange the order which we draw the non-equal slips, and in each order there are $4 \times 3 \times 4 \times 3$ ways to pick the slips, so $q = \frac{45 \cdot 6 \cdot 4^2 \cdot 3^2}{40 \cdot 39 \cdot 38 \cdot 37}$.

Hence, the answer is $\frac{q}{p} = \frac{45 \cdot 6 \cdot 4^2 \cdot 3^2}{10\cdot 4!} = \boxed{\textbf{(A) }162}$.

Solution 2 (where the order does not matter)

For probability $p$, there are $\binom{10}{1}=10$ ways to choose the number you want to show up $4$ times.

Hence, the probability is $\frac{10}{\binom{40}{4}}$.

For probability $q$, there are $\binom{10}{2}=45$ ways to choose the $2$ numbers you want to show up twice. There are $\binom{4}{2}\cdot\binom{4}{2}$ ways to pick which slips you want out of the $4$ of each.

Hence, the probability is $\frac{45\cdot6\cdot6}{\binom{40}{4}}$

Hence, $\frac{q}{p}=\frac{45\cdot6\cdot6}{10}=9\cdot6\cdot3=\boxed{\textbf{(A) }162}$.

Video Solution

https://youtu.be/wopflrvUN2c?t=252

~ pi_is_3.14

See Also

2005 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 20
Followed by
Problem 22
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png