Difference between revisions of "2006 Cyprus MO/Lyceum/Problem 22"
(New page: ==Problem== {{empty}} ==Solution== {{solution}} ==See also== {{CYMO box|year=2006|l=Lyceum|num-b=21|num-a=23}}) |
(solution) |
||
Line 1: | Line 1: | ||
− | ==Problem== | + | == Problem == |
− | {{ | + | <div style="float:right"> |
+ | [[Image:2006 CyMO-22.PNG|250px]] | ||
+ | </div> | ||
+ | |||
+ | <math>ABCD</math> is rectangular and the points <math>K,L,M,N</math> lie on the sides <math>AB, BC, CD, DA</math> respectively so that <math>\frac{AK}{KB}=\frac{BL}{LC}=\frac{CM}{MD}=\frac{DN}{NA}=2</math>. If <math>E_1</math> is the area of <math>KLMN</math> and <math>E_2</math> is the area of the rectangle <math>ABCD</math>, the ratio <math>\frac{E_1}{E_2}</math> equals | ||
+ | |||
+ | A. <math>\frac{5}{9}</math> | ||
+ | |||
+ | B. <math>\frac{1}{3}</math> | ||
+ | |||
+ | C. <math>\frac{9}{5}</math> | ||
+ | |||
+ | D. <math>\frac{3}{5}</math> | ||
+ | |||
+ | E. None of these | ||
==Solution== | ==Solution== | ||
− | {{ | + | Let <math>AB = CD = x</math>, <math>BC = AD = y</math>. Using the [[Pythagorean Theorem]], <math>KM = \sqrt{\frac{x^2}{9} + y^2}</math>, <math>LN = \sqrt{x^2 + \frac{y^2}{9}}</math>. Using the formula <math>A = \frac{1}{2}d_1d_2</math> for a [[rhombus]], we get <math>\frac{1}{2}\sqrt{\left(x^2 + \frac{y^2}{9}\right)\left(x^2 + \frac{y^2}{9}\right)} = \frac{1}{2}\sqrt{\frac{x^4}{9} + \frac{y^4}{9} + \frac{82}{81}x^2y^2} = \frac{\sqrt{9x^4 + 9y^4 + 82x^2y^2}}{18}</math>. Thus the ratio is <math>\frac{\sqrt{9x^4 + 9y^4 + 82x^2y^2}}{18xy}</math>. There is no way we can simplify this further, and in fact we can plug in different values of <math>x,y</math> to see that the answer is <math>\mathrm{E}</math>. |
+ | |||
+ | Be careful not to just try a couple of simple examples like <math>ABCD</math> being a square, where we will get the answer <math>5/9</math>, which is incorrect in general. | ||
==See also== | ==See also== | ||
{{CYMO box|year=2006|l=Lyceum|num-b=21|num-a=23}} | {{CYMO box|year=2006|l=Lyceum|num-b=21|num-a=23}} | ||
+ | |||
+ | [[Category:Introductory Geometry Problems]] |
Revision as of 17:09, 15 October 2007
Problem
is rectangular and the points lie on the sides respectively so that . If is the area of and is the area of the rectangle , the ratio equals
A.
B.
C.
D.
E. None of these
Solution
Let , . Using the Pythagorean Theorem, , . Using the formula for a rhombus, we get . Thus the ratio is . There is no way we can simplify this further, and in fact we can plug in different values of to see that the answer is .
Be careful not to just try a couple of simple examples like being a square, where we will get the answer , which is incorrect in general.
See also
2006 Cyprus MO, Lyceum (Problems) | ||
Preceded by Problem 21 |
Followed by Problem 23 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 |