GET READY FOR THE AMC 10 WITH AoPS
Learn with outstanding instructors and top-scoring students from around the world in our AMC 10 Problem Series online course.
CHECK SCHEDULE

Difference between revisions of "2022 AMC 10B Problems"

(Problem 1)
Line 2: Line 2:
  
 
==Problem 1 ==
 
==Problem 1 ==
Define <math>x\diamondsuit y</math> to be <math>|x-y|</math> for all real numbers <math>x</math> and <math>y.</math> What is the value of <math></math>(1\diamondsuit(2\diamondsuit3))-((1\diamondsuit2)\diamondsuit3)?<math>
+
Define <math>x\diamondsuit y</math> to be <math>|x-y|</math> for all real numbers <math>x</math> and <math>y.</math> What is the value of <cmath>(1\diamondsuit(2\diamondsuit3))-((1\diamondsuit2)\diamondsuit3)?</cmath>
</math>\textbf{(A)}\ {-}2 \qquad\textbf{(B)}\ {-}1 \qquad\textbf{(C)}\ 0 \qquad\textbf{(D)}\ 1 \qquad\textbf{(E)}\ 2<math>
+
<math>\textbf{(A)}\ {-}2 \qquad\textbf{(B)}\ {-}1 \qquad\textbf{(C)}\ 0 \qquad\textbf{(D)}\ 1 \qquad\textbf{(E)}\ 2</math>
  
 
[[2022 AMC 10B Problems/Problem 1|Solution]]
 
[[2022 AMC 10B Problems/Problem 1|Solution]]
Line 10: Line 10:
 
XXX
 
XXX
  
</math>\textbf{(A)}\ X \qquad\textbf{(B)}\ X \qquad\textbf{(C)}\ X \qquad\textbf{(D)}\ X \qquad\textbf{(E)}\ X<math>
+
<math>\textbf{(A)}\ X \qquad\textbf{(B)}\ X \qquad\textbf{(C)}\ X \qquad\textbf{(D)}\ X \qquad\textbf{(E)}\ X</math>
  
 
[[2022 AMC 10B Problems/Problem 2|Solution]]
 
[[2022 AMC 10B Problems/Problem 2|Solution]]
Line 16: Line 16:
 
How many three-digit positive integers have an odd number of even digits?
 
How many three-digit positive integers have an odd number of even digits?
  
</math>\textbf{(A) }150\qquad\textbf{(B) }250\qquad\textbf{(C) }350\qquad\textbf{(D) }450\qquad\textbf{(E) }550<math>
+
<math>\textbf{(A) }150\qquad\textbf{(B) }250\qquad\textbf{(C) }350\qquad\textbf{(D) }450\qquad\textbf{(E) }550</math>
  
 
[[2022 AMC 10B Problems/Problem 3|Solution]]
 
[[2022 AMC 10B Problems/Problem 3|Solution]]
  
 
==Problem 4 ==
 
==Problem 4 ==
A donkey suffers an attack of hiccups and the first hiccup happens at </math>\text{4:00}<math> one afternoon. Suppose that
+
A donkey suffers an attack of hiccups and the first hiccup happens at <math>\text{4:00}</math> one afternoon. Suppose that
the donkey hiccups regularly every </math>5<math> seconds. At what time does the donkey’s </math>\text{700th}<math> hiccup occur?
+
the donkey hiccups regularly every <math>5</math> seconds. At what time does the donkey’s <math>\text{700th}</math> hiccup occur?
  
</math>\textbf{(A) }<math> </math>15<math> seconds after </math>\text{4:58}<math>
+
<math>\textbf{(A) }</math> <math>15</math> seconds after <math>\text{4:58}</math>
  
</math>\textbf{(B) }<math> </math>20<math> seconds after </math>\text{4:58}<math>
+
<math>\textbf{(B) }</math> <math>20</math> seconds after <math>\text{4:58}</math>
  
</math>\textbf{(C)}<math> </math>25<math> seconds after </math>\text{4:58}<math>
+
<math>\textbf{(C)}</math> <math>25</math> seconds after <math>\text{4:58}</math>
  
</math>\textbf{(D) }<math> </math>30<math> seconds after </math>\text{4:58}<math>
+
<math>\textbf{(D) }</math> <math>30</math> seconds after <math>\text{4:58}</math>
  
</math>\textbf{(E) }<math> </math>35<math> seconds after </math>\text{4:58}<math>
+
<math>\textbf{(E) }</math> <math>35</math> seconds after <math>\text{4:58}</math>
  
 
[[2022 AMC 10B Problems/Problem 4|Solution]]
 
[[2022 AMC 10B Problems/Problem 4|Solution]]
Line 39: Line 39:
 
XXX
 
XXX
  
</math>\textbf{(A)}\ X \qquad\textbf{(B)}\ X \qquad\textbf{(C)}\ X \qquad\textbf{(D)}\ X \qquad\textbf{(E)}\ X<math>
+
<math>\textbf{(A)}\ X \qquad\textbf{(B)}\ X \qquad\textbf{(C)}\ X \qquad\textbf{(D)}\ X \qquad\textbf{(E)}\ X</math>
  
 
[[2022 AMC 10B Problems/Problem 5|Solution]]
 
[[2022 AMC 10B Problems/Problem 5|Solution]]
  
 
==Problem 6 ==
 
==Problem 6 ==
How many of the first ten numbers of the sequence </math>121, 11211, 1112111, \cdots<math> are prime numbers?
+
How many of the first ten numbers of the sequence <math>121, 11211, 1112111, \cdots</math> are prime numbers?
  
</math>\textbf{(A) } 0 \qquad \textbf{(B) }1 \qquad \textbf{(C) }2 \qquad \textbf{(D) }3 \qquad \textbf{(E) }4<math>
+
<math>\textbf{(A) } 0 \qquad \textbf{(B) }1 \qquad \textbf{(C) }2 \qquad \textbf{(D) }3 \qquad \textbf{(E) }4</math>
  
 
[[2022 AMC 10B Problems/Problem 6|Solution]]
 
[[2022 AMC 10B Problems/Problem 6|Solution]]
Line 53: Line 53:
 
XXX
 
XXX
  
</math>\textbf{(A)}\ X \qquad\textbf{(B)}\ X \qquad\textbf{(C)}\ X \qquad\textbf{(D)}\ X \qquad\textbf{(E)}\ X<math>
+
<math>\textbf{(A)}\ X \qquad\textbf{(B)}\ X \qquad\textbf{(C)}\ X \qquad\textbf{(D)}\ X \qquad\textbf{(E)}\ X</math>
  
 
[[2022 AMC 10B Problems/Problem 7|Solution]]
 
[[2022 AMC 10B Problems/Problem 7|Solution]]
  
 
==Problem 8 ==
 
==Problem 8 ==
Consider the following </math>100<math> sets of </math>10<math> elements each:
+
Consider the following <math>100</math> sets of <math>10</math> elements each:
 
<cmath>\begin{align*}
 
<cmath>\begin{align*}
 
&\{1,2,3,\cdots,10\}, \\
 
&\{1,2,3,\cdots,10\}, \\
Line 67: Line 67:
 
\end{align*}</cmath>
 
\end{align*}</cmath>
  
How many of these sets contain exactly two multiples of </math>7<math>?
+
How many of these sets contain exactly two multiples of <math>7</math>?
  
</math>\textbf{(A)} 40\qquad\textbf{(B)} 42\qquad\textbf{(C)} 42\qquad\textbf{(D)} 49\qquad\textbf{(E)} 50<math>
+
<math>\textbf{(A)} 40\qquad\textbf{(B)} 42\qquad\textbf{(C)} 42\qquad\textbf{(D)} 49\qquad\textbf{(E)} 50</math>
  
 
[[2022 AMC 10B Problems/Problem 8|Solution]]
 
[[2022 AMC 10B Problems/Problem 8|Solution]]
Line 75: Line 75:
 
==Problem 9 ==
 
==Problem 9 ==
 
The sum
 
The sum
<cmath>\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+\dots+\frac{2021}{2022!}</cmath>can be expressed as </math>a-\frac{1}{b!}<math>, where </math>a<math> and </math>b<math> are positive integers. What is </math>a+b<math>?
+
<cmath>\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+\dots+\frac{2021}{2022!}</cmath>can be expressed as <math>a-\frac{1}{b!}</math>, where <math>a</math> and <math>b</math> are positive integers. What is <math>a+b</math>?
  
</math> \textbf{(A)}\ 2020 \qquad\textbf{(B)}\ 2021 \qquad\textbf{(C)}\ 2022 \qquad\textbf{(D)}\ 2023 \qquad\textbf{(E)}\ 2024<math>
+
<math> \textbf{(A)}\ 2020 \qquad\textbf{(B)}\ 2021 \qquad\textbf{(C)}\ 2022 \qquad\textbf{(D)}\ 2023 \qquad\textbf{(E)}\ 2024</math>
  
 
[[2022 AMC 10B Problems/Problem 9|Solution]]
 
[[2022 AMC 10B Problems/Problem 9|Solution]]
Line 84: Line 84:
 
XXX
 
XXX
  
</math>\textbf{(A)}\ X \qquad\textbf{(B)}\ X \qquad\textbf{(C)}\ X \qquad\textbf{(D)}\ X \qquad\textbf{(E)}\ X<math>
+
<math>\textbf{(A)}\ X \qquad\textbf{(B)}\ X \qquad\textbf{(C)}\ X \qquad\textbf{(D)}\ X \qquad\textbf{(E)}\ X</math>
  
 
[[2022 AMC 10B Problems/Problem 10|Solution]]
 
[[2022 AMC 10B Problems/Problem 10|Solution]]
Line 91: Line 91:
 
XXX
 
XXX
  
</math>\textbf{(A)}\ X \qquad\textbf{(B)}\ X \qquad\textbf{(C)}\ X \qquad\textbf{(D)}\ X \qquad\textbf{(E)}\ X<math>
+
<math>\textbf{(A)}\ X \qquad\textbf{(B)}\ X \qquad\textbf{(C)}\ X \qquad\textbf{(D)}\ X \qquad\textbf{(E)}\ X</math>
  
 
[[2022 AMC 10B Problems/Problem 11|Solution]]
 
[[2022 AMC 10B Problems/Problem 11|Solution]]
  
 
==Problem 12 ==
 
==Problem 12 ==
A pair of fair </math>6<math>-sided dice is rolled </math>n<math> times. What is the least value of </math>n<math> such that the probability that the sum of the numbers face up on a roll equals </math>7<math> at least once is greater than </math>\frac{1}{2}<math>?
+
A pair of fair <math>6</math>-sided dice is rolled <math>n</math> times. What is the least value of <math>n</math> such that the probability that the sum of the numbers face up on a roll equals <math>7</math> at least once is greater than <math>\frac{1}{2}</math>?
  
</math>\textbf{(A) } 2 \qquad \textbf{(B) } 3 \qquad \textbf{(C) } 4 \qquad \textbf{(D) } 5 \qquad \textbf{(E) } 6<math>
+
<math>\textbf{(A) } 2 \qquad \textbf{(B) } 3 \qquad \textbf{(C) } 4 \qquad \textbf{(D) } 5 \qquad \textbf{(E) } 6</math>
  
 
[[2022 AMC 10B Problems/Problem 12|Solution]]
 
[[2022 AMC 10B Problems/Problem 12|Solution]]
Line 105: Line 105:
 
XXX
 
XXX
  
</math>\textbf{(A)}\ X \qquad\textbf{(B)}\ X \qquad\textbf{(C)}\ X \qquad\textbf{(D)}\ X \qquad\textbf{(E)}\ X<math>
+
<math>\textbf{(A)}\ X \qquad\textbf{(B)}\ X \qquad\textbf{(C)}\ X \qquad\textbf{(D)}\ X \qquad\textbf{(E)}\ X</math>
  
 
[[2022 AMC 10B Problems/Problem 13|Solution]]
 
[[2022 AMC 10B Problems/Problem 13|Solution]]
Line 112: Line 112:
 
XXX
 
XXX
  
</math>\textbf{(A)}\ X \qquad\textbf{(B)}\ X \qquad\textbf{(C)}\ X \qquad\textbf{(D)}\ X \qquad\textbf{(E)}\ X<math>
+
<math>\textbf{(A)}\ X \qquad\textbf{(B)}\ X \qquad\textbf{(C)}\ X \qquad\textbf{(D)}\ X \qquad\textbf{(E)}\ X</math>
  
 
[[2022 AMC 10B Problems/Problem 14|Solution]]
 
[[2022 AMC 10B Problems/Problem 14|Solution]]
Line 119: Line 119:
 
XXX
 
XXX
  
</math>\textbf{(A)}\ X \qquad\textbf{(B)}\ X \qquad\textbf{(C)}\ X \qquad\textbf{(D)}\ X \qquad\textbf{(E)}\ X<math>
+
<math>\textbf{(A)}\ X \qquad\textbf{(B)}\ X \qquad\textbf{(C)}\ X \qquad\textbf{(D)}\ X \qquad\textbf{(E)}\ X</math>
  
 
[[2022 AMC 10B Problems/Problem 15|Solution]]
 
[[2022 AMC 10B Problems/Problem 15|Solution]]
Line 126: Line 126:
 
XXX
 
XXX
  
</math>\textbf{(A)}\ X \qquad\textbf{(B)}\ X \qquad\textbf{(C)}\ X \qquad\textbf{(D)}\ X \qquad\textbf{(E)}\ X<math>
+
<math>\textbf{(A)}\ X \qquad\textbf{(B)}\ X \qquad\textbf{(C)}\ X \qquad\textbf{(D)}\ X \qquad\textbf{(E)}\ X</math>
  
 
[[2022 AMC 10B Problems/Problem 16|Solution]]
 
[[2022 AMC 10B Problems/Problem 16|Solution]]
Line 133: Line 133:
 
XXX
 
XXX
  
</math>\textbf{(A)}\ X \qquad\textbf{(B)}\ X \qquad\textbf{(C)}\ X \qquad\textbf{(D)}\ X \qquad\textbf{(E)}\ X<math>
+
<math>\textbf{(A)}\ X \qquad\textbf{(B)}\ X \qquad\textbf{(C)}\ X \qquad\textbf{(D)}\ X \qquad\textbf{(E)}\ X</math>
  
 
[[2022 AMC 10B Problems/Problem 17|Solution]]
 
[[2022 AMC 10B Problems/Problem 17|Solution]]
Line 140: Line 140:
 
XXX
 
XXX
  
</math>\textbf{(A)}\ X \qquad\textbf{(B)}\ X \qquad\textbf{(C)}\ X \qquad\textbf{(D)}\ X \qquad\textbf{(E)}\ X<math>
+
<math>\textbf{(A)}\ X \qquad\textbf{(B)}\ X \qquad\textbf{(C)}\ X \qquad\textbf{(D)}\ X \qquad\textbf{(E)}\ X</math>
  
 
[[2022 AMC 10B Problems/Problem 18|Solution]]
 
[[2022 AMC 10B Problems/Problem 18|Solution]]
Line 147: Line 147:
 
XXX
 
XXX
  
</math>\textbf{(A)}\ X \qquad\textbf{(B)}\ X \qquad\textbf{(C)}\ X \qquad\textbf{(D)}\ X \qquad\textbf{(E)}\ X<math>
+
<math>\textbf{(A)}\ X \qquad\textbf{(B)}\ X \qquad\textbf{(C)}\ X \qquad\textbf{(D)}\ X \qquad\textbf{(E)}\ X</math>
  
 
[[2022 AMC 10B Problems/Problem 19|Solution]]
 
[[2022 AMC 10B Problems/Problem 19|Solution]]
  
 
==Problem 20 ==
 
==Problem 20 ==
Let </math>ABCD<math> be a rhombus with </math>\angle{ADC} = 46^{\circ}<math>. Let </math>E<math> be the midpoint of </math>\overline{CD}<math>, and let </math>F<math> be the point on </math>\overline{BE}<math> such that </math>\overline{AF}<math> is perpendicular to </math>\overline{BE}<math>. What is the degree measure of </math>\angle{BFC}<math>?
+
Let <math>ABCD</math> be a rhombus with <math>\angle{ADC} = 46^{\circ}</math>. Let <math>E</math> be the midpoint of <math>\overline{CD}</math>, and let <math>F</math> be the point on <math>\overline{BE}</math> such that <math>\overline{AF}</math> is perpendicular to <math>\overline{BE}</math>. What is the degree measure of <math>\angle{BFC}</math>?
  
</math>\textbf{(A)}\ 110 \qquad \textbf{(B)}\ 111 \qquad \textbf{(C)}\ 112 \qquad \textbf{(D)}\ 113 \qquad \textbf{(E)}\ 114<math>
+
<math>\textbf{(A)}\ 110 \qquad \textbf{(B)}\ 111 \qquad \textbf{(C)}\ 112 \qquad \textbf{(D)}\ 113 \qquad \textbf{(E)}\ 114</math>
  
 
[[2022 AMC 10B Problems/Problem 20|Solution]]
 
[[2022 AMC 10B Problems/Problem 20|Solution]]
Line 161: Line 161:
 
XXX
 
XXX
  
</math>\textbf{(A)}\ X \qquad\textbf{(B)}\ X \qquad\textbf{(C)}\ X \qquad\textbf{(D)}\ X \qquad\textbf{(E)}\ X<math>
+
<math>\textbf{(A)}\ X \qquad\textbf{(B)}\ X \qquad\textbf{(C)}\ X \qquad\textbf{(D)}\ X \qquad\textbf{(E)}\ X</math>
  
 
[[2022 AMC 10B Problems/Problem 21|Solution]]
 
[[2022 AMC 10B Problems/Problem 21|Solution]]
  
 
==Problem 22 ==
 
==Problem 22 ==
Let </math>S<math> be the set of circles in the coordinate plane that are tangent to each of the three circles with equations </math>x^{2}+y^{2}=4<math>, </math>x^{2}+y^{2}=64<math>, and </math>(x-5)^{2}+y^{2}=3<math>. What is the sum of the areas of all circles in </math>S<math>?
+
Let <math>S</math> be the set of circles in the coordinate plane that are tangent to each of the three circles with equations <math>x^{2}+y^{2}=4</math>, <math>x^{2}+y^{2}=64</math>, and <math>(x-5)^{2}+y^{2}=3</math>. What is the sum of the areas of all circles in <math>S</math>?
  
</math>\textbf{(A)}~48\pi\qquad\textbf{(B)}~68\pi\qquad\textbf{(C)}~96\pi\qquad\textbf{(D)}~102\pi\qquad\textbf{(E)}~136\pi\qquad<math>
+
<math>\textbf{(A)}~48\pi\qquad\textbf{(B)}~68\pi\qquad\textbf{(C)}~96\pi\qquad\textbf{(D)}~102\pi\qquad\textbf{(E)}~136\pi\qquad</math>
  
 
[[2022 AMC 10B Problems/Problem 22|Solution]]
 
[[2022 AMC 10B Problems/Problem 22|Solution]]
  
 
==Problem 23 ==
 
==Problem 23 ==
Ant Amelia starts on the number line at </math>0<math> and crawls in the following manner. For </math>n=1,2,3,<math> Amelia chooses a time duration </math>t_n<math> and an increment </math>x_n<math> independently and uniformly at random from the interval </math>(0,1).<math> During the </math>n<math>th step of the process, Amelia moves </math>x_n<math> units in the positive direction, using up </math>t_n<math> minutes. If the total elapsed time has exceeded </math>1<math> minute during the </math>n<math>th step, she stops at the end of that step; otherwise, she continues with the next step, taking at most </math>3<math> steps in all. What is the probability that Amelia’s position when she stops will be greater than </math>1<math>?
+
Ant Amelia starts on the number line at <math>0</math> and crawls in the following manner. For <math>n=1,2,3,</math> Amelia chooses a time duration <math>t_n</math> and an increment <math>x_n</math> independently and uniformly at random from the interval <math>(0,1).</math> During the <math>n</math>th step of the process, Amelia moves <math>x_n</math> units in the positive direction, using up <math>t_n</math> minutes. If the total elapsed time has exceeded <math>1</math> minute during the <math>n</math>th step, she stops at the end of that step; otherwise, she continues with the next step, taking at most <math>3</math> steps in all. What is the probability that Amelia’s position when she stops will be greater than <math>1</math>?
  
</math>\textbf{(A) }\frac{1}{3} \qquad \textbf{(B) }\frac{1}{2} \qquad \textbf{(C) }\frac{2}{3} \qquad \textbf{(D) }\frac{3}{4} \qquad \textbf{(E) }\frac{5}{6}<math>
+
<math>\textbf{(A) }\frac{1}{3} \qquad \textbf{(B) }\frac{1}{2} \qquad \textbf{(C) }\frac{2}{3} \qquad \textbf{(D) }\frac{3}{4} \qquad \textbf{(E) }\frac{5}{6}</math>
  
 
[[2022 AMC 10B Problems/Problem 23|Solution]]
 
[[2022 AMC 10B Problems/Problem 23|Solution]]
Line 182: Line 182:
 
XXX
 
XXX
  
</math>\textbf{(A)}\ X \qquad\textbf{(B)}\ X \qquad\textbf{(C)}\ X \qquad\textbf{(D)}\ X \qquad\textbf{(E)}\ X<math>
+
<math>\textbf{(A)}\ X \qquad\textbf{(B)}\ X \qquad\textbf{(C)}\ X \qquad\textbf{(D)}\ X \qquad\textbf{(E)}\ X</math>
  
 
[[2022 AMC 10B Problems/Problem 24|Solution]]
 
[[2022 AMC 10B Problems/Problem 24|Solution]]
Line 189: Line 189:
 
XXX
 
XXX
  
</math>\textbf{(A)}\ X \qquad\textbf{(B)}\ X \qquad\textbf{(C)}\ X \qquad\textbf{(D)}\ X \qquad\textbf{(E)}\ X$
+
<math>\textbf{(A)}\ X \qquad\textbf{(B)}\ X \qquad\textbf{(C)}\ X \qquad\textbf{(D)}\ X \qquad\textbf{(E)}\ X</math>
  
 
[[2022 AMC 10B Problems/Problem 25|Solution]]
 
[[2022 AMC 10B Problems/Problem 25|Solution]]

Revision as of 14:20, 17 November 2022

2022 AMC 10B (Answer Key)
Printable versions: WikiAoPS ResourcesPDF

Instructions

  1. This is a 25-question, multiple choice test. Each question is followed by answers marked A, B, C, D and E. Only one of these is correct.
  2. You will receive 6 points for each correct answer, 2.5 points for each problem left unanswered if the year is before 2006, 1.5 points for each problem left unanswered if the year is after 2006, and 0 points for each incorrect answer.
  3. No aids are permitted other than scratch paper, graph paper, ruler, compass, protractor and erasers (and calculators that are accepted for use on the SAT if before 2006. No problems on the test will require the use of a calculator).
  4. Figures are not necessarily drawn to scale.
  5. You will have 75 minutes working time to complete the test.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Problem 1

Define $x\diamondsuit y$ to be $|x-y|$ for all real numbers $x$ and $y.$ What is the value of \[(1\diamondsuit(2\diamondsuit3))-((1\diamondsuit2)\diamondsuit3)?\] $\textbf{(A)}\ {-}2 \qquad\textbf{(B)}\ {-}1 \qquad\textbf{(C)}\ 0 \qquad\textbf{(D)}\ 1 \qquad\textbf{(E)}\ 2$

Solution

Problem 2

XXX

$\textbf{(A)}\ X \qquad\textbf{(B)}\ X \qquad\textbf{(C)}\ X \qquad\textbf{(D)}\ X \qquad\textbf{(E)}\ X$

Solution

Problem 3

How many three-digit positive integers have an odd number of even digits?

$\textbf{(A) }150\qquad\textbf{(B) }250\qquad\textbf{(C) }350\qquad\textbf{(D) }450\qquad\textbf{(E) }550$

Solution

Problem 4

A donkey suffers an attack of hiccups and the first hiccup happens at $\text{4:00}$ one afternoon. Suppose that the donkey hiccups regularly every $5$ seconds. At what time does the donkey’s $\text{700th}$ hiccup occur?

$\textbf{(A) }$ $15$ seconds after $\text{4:58}$

$\textbf{(B) }$ $20$ seconds after $\text{4:58}$

$\textbf{(C)}$ $25$ seconds after $\text{4:58}$

$\textbf{(D) }$ $30$ seconds after $\text{4:58}$

$\textbf{(E) }$ $35$ seconds after $\text{4:58}$

Solution

Problem 5

XXX

$\textbf{(A)}\ X \qquad\textbf{(B)}\ X \qquad\textbf{(C)}\ X \qquad\textbf{(D)}\ X \qquad\textbf{(E)}\ X$

Solution

Problem 6

How many of the first ten numbers of the sequence $121, 11211, 1112111, \cdots$ are prime numbers?

$\textbf{(A) } 0 \qquad \textbf{(B) }1 \qquad \textbf{(C) }2 \qquad \textbf{(D) }3 \qquad \textbf{(E) }4$

Solution

Problem 7

XXX

$\textbf{(A)}\ X \qquad\textbf{(B)}\ X \qquad\textbf{(C)}\ X \qquad\textbf{(D)}\ X \qquad\textbf{(E)}\ X$

Solution

Problem 8

Consider the following $100$ sets of $10$ elements each: \begin{align*} &\{1,2,3,\cdots,10\}, \\ &\{11,12,13,\cdots,20\},\\ &\{21,22,23,\cdots,30\},\\ &\vdots\\ &\{991,992,993,\cdots,1000\}. \end{align*}

How many of these sets contain exactly two multiples of $7$?

$\textbf{(A)} 40\qquad\textbf{(B)} 42\qquad\textbf{(C)} 42\qquad\textbf{(D)} 49\qquad\textbf{(E)} 50$

Solution

Problem 9

The sum \[\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+\dots+\frac{2021}{2022!}\]can be expressed as $a-\frac{1}{b!}$, where $a$ and $b$ are positive integers. What is $a+b$?

$\textbf{(A)}\ 2020 \qquad\textbf{(B)}\ 2021 \qquad\textbf{(C)}\ 2022 \qquad\textbf{(D)}\ 2023 \qquad\textbf{(E)}\ 2024$

Solution

Problem 10

XXX

$\textbf{(A)}\ X \qquad\textbf{(B)}\ X \qquad\textbf{(C)}\ X \qquad\textbf{(D)}\ X \qquad\textbf{(E)}\ X$

Solution

Problem 11

XXX

$\textbf{(A)}\ X \qquad\textbf{(B)}\ X \qquad\textbf{(C)}\ X \qquad\textbf{(D)}\ X \qquad\textbf{(E)}\ X$

Solution

Problem 12

A pair of fair $6$-sided dice is rolled $n$ times. What is the least value of $n$ such that the probability that the sum of the numbers face up on a roll equals $7$ at least once is greater than $\frac{1}{2}$?

$\textbf{(A) } 2 \qquad \textbf{(B) } 3 \qquad \textbf{(C) } 4 \qquad \textbf{(D) } 5 \qquad \textbf{(E) } 6$

Solution

Problem 13

XXX

$\textbf{(A)}\ X \qquad\textbf{(B)}\ X \qquad\textbf{(C)}\ X \qquad\textbf{(D)}\ X \qquad\textbf{(E)}\ X$

Solution

Problem 14

XXX

$\textbf{(A)}\ X \qquad\textbf{(B)}\ X \qquad\textbf{(C)}\ X \qquad\textbf{(D)}\ X \qquad\textbf{(E)}\ X$

Solution

Problem 15

XXX

$\textbf{(A)}\ X \qquad\textbf{(B)}\ X \qquad\textbf{(C)}\ X \qquad\textbf{(D)}\ X \qquad\textbf{(E)}\ X$

Solution

Problem 16

XXX

$\textbf{(A)}\ X \qquad\textbf{(B)}\ X \qquad\textbf{(C)}\ X \qquad\textbf{(D)}\ X \qquad\textbf{(E)}\ X$

Solution

Problem 17

XXX

$\textbf{(A)}\ X \qquad\textbf{(B)}\ X \qquad\textbf{(C)}\ X \qquad\textbf{(D)}\ X \qquad\textbf{(E)}\ X$

Solution

Problem 18

XXX

$\textbf{(A)}\ X \qquad\textbf{(B)}\ X \qquad\textbf{(C)}\ X \qquad\textbf{(D)}\ X \qquad\textbf{(E)}\ X$

Solution

Problem 19

XXX

$\textbf{(A)}\ X \qquad\textbf{(B)}\ X \qquad\textbf{(C)}\ X \qquad\textbf{(D)}\ X \qquad\textbf{(E)}\ X$

Solution

Problem 20

Let $ABCD$ be a rhombus with $\angle{ADC} = 46^{\circ}$. Let $E$ be the midpoint of $\overline{CD}$, and let $F$ be the point on $\overline{BE}$ such that $\overline{AF}$ is perpendicular to $\overline{BE}$. What is the degree measure of $\angle{BFC}$?

$\textbf{(A)}\ 110 \qquad \textbf{(B)}\ 111 \qquad \textbf{(C)}\ 112 \qquad \textbf{(D)}\ 113 \qquad \textbf{(E)}\ 114$

Solution

Problem 21

XXX

$\textbf{(A)}\ X \qquad\textbf{(B)}\ X \qquad\textbf{(C)}\ X \qquad\textbf{(D)}\ X \qquad\textbf{(E)}\ X$

Solution

Problem 22

Let $S$ be the set of circles in the coordinate plane that are tangent to each of the three circles with equations $x^{2}+y^{2}=4$, $x^{2}+y^{2}=64$, and $(x-5)^{2}+y^{2}=3$. What is the sum of the areas of all circles in $S$?

$\textbf{(A)}~48\pi\qquad\textbf{(B)}~68\pi\qquad\textbf{(C)}~96\pi\qquad\textbf{(D)}~102\pi\qquad\textbf{(E)}~136\pi\qquad$

Solution

Problem 23

Ant Amelia starts on the number line at $0$ and crawls in the following manner. For $n=1,2,3,$ Amelia chooses a time duration $t_n$ and an increment $x_n$ independently and uniformly at random from the interval $(0,1).$ During the $n$th step of the process, Amelia moves $x_n$ units in the positive direction, using up $t_n$ minutes. If the total elapsed time has exceeded $1$ minute during the $n$th step, she stops at the end of that step; otherwise, she continues with the next step, taking at most $3$ steps in all. What is the probability that Amelia’s position when she stops will be greater than $1$?

$\textbf{(A) }\frac{1}{3} \qquad \textbf{(B) }\frac{1}{2} \qquad \textbf{(C) }\frac{2}{3} \qquad \textbf{(D) }\frac{3}{4} \qquad \textbf{(E) }\frac{5}{6}$

Solution

Problem 24

XXX

$\textbf{(A)}\ X \qquad\textbf{(B)}\ X \qquad\textbf{(C)}\ X \qquad\textbf{(D)}\ X \qquad\textbf{(E)}\ X$

Solution

Problem 25

XXX

$\textbf{(A)}\ X \qquad\textbf{(B)}\ X \qquad\textbf{(C)}\ X \qquad\textbf{(D)}\ X \qquad\textbf{(E)}\ X$

Solution

See also

2022 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
2021 Fall AMC 10B Problems
Followed by
2023 AMC 10B Problems
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png