Difference between revisions of "2006 Cyprus MO/Lyceum/Problem 3"

(Problem)
Line 1: Line 1:
 
==Problem==
 
==Problem==
{{empty}}
+
The domain of the function <math>f(x)=\sqrt{4+2x}</math> is
 +
 
 +
A. <math>(-2,+\infty)</math>
 +
 
 +
B. <math>[0,+\infty)</math>
 +
 
 +
C.  <math>[-2,+\infty)</math>
 +
 
 +
D. <math>[-2,0]</math>
 +
 
 +
E. <math>R</math>
 +
 
  
 
==Solution==
 
==Solution==
{{solution}}
+
2x+4 must be non-negative. Therefore, x+2 must be non-negative. Therefore, all x greater than or equal to -2 are in the domain. <math>\mathrm {(A)}</math>
  
 
==See also==
 
==See also==
 
{{CYMO box|year=2006|l=Lyceum|num-b=2|num-a=4}}
 
{{CYMO box|year=2006|l=Lyceum|num-b=2|num-a=4}}

Revision as of 21:13, 17 October 2007

Problem

The domain of the function $f(x)=\sqrt{4+2x}$ is

A. $(-2,+\infty)$

B. $[0,+\infty)$

C. $[-2,+\infty)$

D. $[-2,0]$

E. $R$


Solution

2x+4 must be non-negative. Therefore, x+2 must be non-negative. Therefore, all x greater than or equal to -2 are in the domain. $\mathrm {(A)}$

See also

2006 Cyprus MO, Lyceum (Problems)
Preceded by
Problem 2
Followed by
Problem 4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30