Difference between revisions of "2006 Cyprus MO/Lyceum/Problem 3"
(→Problem) |
|||
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
− | { | + | The domain of the function <math>f(x)=\sqrt{4+2x}</math> is |
+ | |||
+ | A. <math>(-2,+\infty)</math> | ||
+ | |||
+ | B. <math>[0,+\infty)</math> | ||
+ | |||
+ | C. <math>[-2,+\infty)</math> | ||
+ | |||
+ | D. <math>[-2,0]</math> | ||
+ | |||
+ | E. <math>R</math> | ||
+ | |||
==Solution== | ==Solution== | ||
− | { | + | 2x+4 must be non-negative. Therefore, x+2 must be non-negative. Therefore, all x greater than or equal to -2 are in the domain. <math>\mathrm {(A)}</math> |
==See also== | ==See also== | ||
{{CYMO box|year=2006|l=Lyceum|num-b=2|num-a=4}} | {{CYMO box|year=2006|l=Lyceum|num-b=2|num-a=4}} |
Revision as of 21:13, 17 October 2007
Problem
The domain of the function is
A.
B.
C.
D.
E.
Solution
2x+4 must be non-negative. Therefore, x+2 must be non-negative. Therefore, all x greater than or equal to -2 are in the domain.
See also
2006 Cyprus MO, Lyceum (Problems) | ||
Preceded by Problem 2 |
Followed by Problem 4 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 |