Difference between revisions of "2005 AMC 12B Problems/Problem 24"
Mathboy100 (talk | contribs) |
Mathboy100 (talk | contribs) |
||
Line 6: | Line 6: | ||
== Solution 1 (Complex numbers)== | == Solution 1 (Complex numbers)== | ||
− | Let the three points be at <math>A = (x_1, x_1^2)</math>, <math>B = (x_2, x_2^2)</math>, and <math>C = (x_3, x_3^2)</math>, such that the slope between the first two is <math>2</math>. | + | Let the three points be at <math>A = (x_1, x_1^2)</math>, <math>B = (x_2, x_2^2)</math>, and <math>C = (x_3, x_3^2)</math>, such that the slope between the first two is <math>2</math>, and <math>A</math> is the point with the least <math>y</math>-coordinate. |
Then, we have <math>\textrm{Slope of }AC = \frac{x_1 - x_3}{x_1^2 - x_3^2} = x_1 + x_3</math>. Similarly, the slope of <math>BC</math> is <math>x_2 + x_3</math>, and the slope of <math>AB</math> is <math>x_1 + x_2 = 2</math>. The desired sum is <math>x_1 + x_2 + x_3</math>, which is equal to the sum of the slopes divided by <math>2</math>. | Then, we have <math>\textrm{Slope of }AC = \frac{x_1 - x_3}{x_1^2 - x_3^2} = x_1 + x_3</math>. Similarly, the slope of <math>BC</math> is <math>x_2 + x_3</math>, and the slope of <math>AB</math> is <math>x_1 + x_2 = 2</math>. The desired sum is <math>x_1 + x_2 + x_3</math>, which is equal to the sum of the slopes divided by <math>2</math>. | ||
Line 17: | Line 17: | ||
<cmath> = \frac{8 + 5\sqrt{3}}{-11}</cmath> | <cmath> = \frac{8 + 5\sqrt{3}}{-11}</cmath> | ||
<cmath> = \frac{-8 - 5\sqrt{3}}{11}.</cmath> | <cmath> = \frac{-8 - 5\sqrt{3}}{11}.</cmath> | ||
+ | The slope <math>BC</math> can also be solved similarly, noting that it makes a <math>-60^{\circ}</math> angle with <math>AB</math>: | ||
+ | <cmath>(1+2i)(1-\sqrt{3}i)</cmath> | ||
+ | <cmath> = 1 + 2\sqrt{3} + 2i - \sqrt{3}i</cmath> | ||
+ | <cmath>\textrm{Slope } = \frac{1 + 2\sqrt{3}}{2 - \sqrt{3}}</cmath> | ||
+ | At this point, we don't even have to compute the value of this: simply observe that this equation is very similar to the one we obtained last time: <math>\frac{2 + \sqrt{3}}{1 - 2\sqrt{3}}</math>, just with the coefficients of <math>\sqrt{3}</math> multiplied by <math>-1</math> in both terms. Thus, the rational term will stay the same, but the term with <math>\sqrt{3}</math> will have its sign flipped, meaning that these slopes are in fact conjugates! | ||
+ | |||
+ | Using this fact, our sum is simply <math>2 - 2\cdot\frac{8}{11} = \frac{6}{11}</math>, and thus our sum is <math>\frac{3}{11}</math>, which gives the answer <math>\boxed{\mathrm{(A)}\ 14}</math>. | ||
== Solution 2 == | == Solution 2 == |
Revision as of 02:18, 26 November 2022
Problem
All three vertices of an equilateral triangle are on the parabola , and one of its sides has a slope of . The -coordinates of the three vertices have a sum of , where and are relatively prime positive integers. What is the value of ?
Solution 1 (Complex numbers)
Let the three points be at , , and , such that the slope between the first two is , and is the point with the least -coordinate.
Then, we have . Similarly, the slope of is , and the slope of is . The desired sum is , which is equal to the sum of the slopes divided by .
To find the slope of , we note that it comes at a angle with . Thus, we can find the slope of by multiplying the two complex numbers and . What this does is generate the complex number that is at a angle with the complex number . Then, we can find the slope of the line between this new complex number and the origin: The slope can also be solved similarly, noting that it makes a angle with : At this point, we don't even have to compute the value of this: simply observe that this equation is very similar to the one we obtained last time: , just with the coefficients of multiplied by in both terms. Thus, the rational term will stay the same, but the term with will have its sign flipped, meaning that these slopes are in fact conjugates!
Using this fact, our sum is simply , and thus our sum is , which gives the answer .
Solution 2
Using the slope formula and differences of squares, we find:
= the slope of ,
= the slope of ,
= the slope of .
So the value that we need to find is the sum of the slopes of the three sides of the triangle divided by . Without loss of generality, let be the side that has the smallest angle with the positive -axis. Let be an arbitrary point with the coordinates . Translate the triangle so is at the origin. Then . Since the slope of a line is equal to the tangent of the angle formed by the line and the positive x- axis, the answer is .
Using , and the tangent addition formula, this simplifies to , so the answer is
See also
2005 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 23 |
Followed by Problem 25 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.