Difference between revisions of "2005 AIME II Problems/Problem 1"
Pi is 3.14 (talk | contribs) (→Solution) |
m (→Solution: Fixed a typo) |
||
Line 18: | Line 18: | ||
Cancelling like terms, we get <math>(n - 3)(n - 4)(n - 5) = 720</math>. | Cancelling like terms, we get <math>(n - 3)(n - 4)(n - 5) = 720</math>. | ||
− | We must find a [[factoring|factorization]] of the left-hand side of this equation into three consecutive [[integer]]s. Since 720 is close to <math>9^3=729</math>, we try 8, 9, and 10, which works, so <math>n - 3 = 10</math> and <math>n = \boxed{ | + | We must find a [[factoring|factorization]] of the left-hand side of this equation into three consecutive [[integer]]s. Since 720 is close to <math>9^3=729</math>, we try 8, 9, and 10, which works, so <math>n - 3 = 10</math> and <math>n = \boxed{13}</math>. |
== See Also == | == See Also == |
Revision as of 14:49, 11 December 2022
Contents
[hide]Problem
A game uses a deck of different cards, where is an integer and The number of possible sets of 6 cards that can be drawn from the deck is 6 times the number of possible sets of 3 cards that can be drawn. Find
Video Solution
https://youtu.be/IRyWOZQMTV8?t=150
~ pi_is_3.14
Solution
The number of ways to draw six cards from is given by the binomial coefficient .
The number of ways to choose three cards from is .
We are given that , so .
Cancelling like terms, we get .
We must find a factorization of the left-hand side of this equation into three consecutive integers. Since 720 is close to , we try 8, 9, and 10, which works, so and .
See Also
2005 AIME II (Problems • Answer Key • Resources) | ||
Preceded by First Question |
Followed by Problem 2 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.