Difference between revisions of "2006 Cyprus MO/Lyceum/Problem 11"

m (Solution: \left(right))
Line 25: Line 25:
 
<math>B=(0,4)</math>
 
<math>B=(0,4)</math>
  
<math>\Gamma =(\frac{8}{3},\frac{4}{3})</math>
+
<math>\Gamma =\left(\frac{8}{3},\frac{4}{3}\right)</math>
  
 
We find the area of triangles:
 
We find the area of triangles:

Revision as of 12:40, 21 October 2007

Problem

2006 CyMO-11.PNG

The lines $(\epsilon):x-2y=0$ and $(\delta):x+y=4$ intersect at the point $\Gamma$. If the line $(\delta)$ intersects the axes $Ox$ and $Oy$ to the points $A$ and $B$ respectively, then the ratio of the area of the triangle $OA\Gamma$ to the area of the triangle $OB\Gamma$ equals

A. $\frac{1}{3}$

B. $\frac{2}{3}$

C. $\frac{3}{5}$

D. $\frac{1}{2}$

E. $\frac{4}{9}$

Solution

We find some coordinates:

$O=(0,0)$

$A=(4,0)$

$B=(0,4)$

$\Gamma =\left(\frac{8}{3},\frac{4}{3}\right)$

We find the area of triangles:

$[OAB]=8$

$[OA\Gamma]=\frac{\frac{4}{3}*4}{2}=\frac{8}{3}$

$[OB\Gamma]=[OAB]-[OA\Gamma]=\frac{16}{3}$

$\frac{[OA\Gamma]}{[OB\Gamma]}=\frac{1}{2} \Rightarrow \mathrm {(D)}$

See also

2006 Cyprus MO, Lyceum (Problems)
Preceded by
Problem 10
Followed by
Problem 12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30