Difference between revisions of "2023 AIME I Problems/Problem 10"
R00tsofunity (talk | contribs) (Created page with "==Problem 10== There exists a unique positive integer <math>a</math> for which the sum <cmath>U=\sum_{n=1}^{2023}\left\lfloor\dfrac{n^{2}-na}{5}\right\rfloor</cmath> is an int...") |
|||
Line 3: | Line 3: | ||
(Note that <math>\lfloor x\rfloor</math> denotes the greatest integer that is less than or equal to <math>x</math>.) | (Note that <math>\lfloor x\rfloor</math> denotes the greatest integer that is less than or equal to <math>x</math>.) | ||
+ | |||
+ | ==Bounds and Decimal Part Analysis== | ||
+ | |||
+ | Define <math>\left\{ x \right\} = x - \left\lfloor x \right\rfloor</math>. | ||
+ | |||
+ | First, we bound <math>U</math>. | ||
+ | |||
+ | We establish an upper bound of <math>U</math>. We have | ||
+ | <cmath> | ||
+ | \begin{align*} | ||
+ | U & \leq \sum_{n=1}^{2023} \frac{n^2 - na}{5} \\ | ||
+ | & = \frac{1}{5} \sum_{n=1}^{2023} n^2 - \frac{a}{5} \sum_{n=1}^{2023} n \\ | ||
+ | & = \frac{1012 \cdot 2023}{5} \left( 1349 - a \right) \\ | ||
+ | & \triangleq UB . | ||
+ | \end{align*} | ||
+ | </cmath> | ||
+ | |||
+ | We establish a lower bound of <math>U</math>. We have | ||
+ | <cmath> | ||
+ | \begin{align*} | ||
+ | U & = \sum_{n=1}^{2023} \left( \frac{n^2 - na}{5} - \left\{ \frac{n^2 - na}{5} \right\} \right) \\ | ||
+ | & = \sum_{n=1}^{2023} \frac{n^2 - na}{5} | ||
+ | - \sum_{n=1}^{2023} \left\{ \frac{n^2 - na}{5} \right\} \\ | ||
+ | & = UB - \sum_{n=1}^{2023} \left\{ \frac{n^2 - na}{5} \right\} \\ | ||
+ | & \geq UB - \sum_{n=1}^{2023} \mathbf 1 \left\{ \frac{n^2 - na}{5} \notin \Bbb Z \right\} . | ||
+ | \end{align*} | ||
+ | </cmath> | ||
+ | |||
+ | We notice that if <math>5 | n</math>, then <math>\frac{n^2 - na}{5} \in \Bbb Z</math>. | ||
+ | Thus, | ||
+ | <cmath> | ||
+ | \begin{align*} | ||
+ | U & \geq UB - \sum_{n=1}^{2023} \mathbf 1 \left\{ \frac{n^2 - na}{5} \notin \Bbb Z \right\} \\ | ||
+ | & \geq UB - \sum_{n=1}^{2023} \mathbf 1 \left\{ 5 \nmid n \right\} \\ | ||
+ | & = UB - \left( 2023 - \left\lfloor \frac{2023}{5} \right\rfloor \right) \\ | ||
+ | & = UB - 1619 \\ | ||
+ | & \triangleq LB . | ||
+ | \end{align*} | ||
+ | </cmath> | ||
+ | |||
+ | Because <math>U \in \left[ - 1000, 1000 \right]</math> and <math>UB - LB = 1619 < \left( 1000 - \left( - 1000 \right) \right)</math>, we must have either <math>UB \in \left[ - 1000, 1000 \right]</math> or <math>LB \in \left[ - 1000, 1000 \right]</math>. | ||
+ | |||
+ | For <math>UB \in \left[ - 1000, 1000 \right]</math>, we get a unique <math>a = 1349</math>. | ||
+ | For <math>LB \in \left[ - 1000, 1000 \right]</math>, there is no feasible <math>a</math>. | ||
+ | |||
+ | Therefore, <math>a = 1349</math>. Thus <math>UB = 0</math>. | ||
+ | |||
+ | Next, we compute <math>U</math>. | ||
+ | |||
+ | Let <math>n = 5 q + r</math>, where <math>r = {\rm Rem} \ \left( n, 5 \right)</math>. | ||
+ | |||
+ | We have | ||
+ | <cmath> | ||
+ | \begin{align*} | ||
+ | \left\{ \frac{n^2 - na}{5} \right\} | ||
+ | & = \left\{ \frac{\left( 5 q + r \right)^2 - \left( 5 q + r \right)\left( 1350 - 1 \right)}{5} \right\} \\ | ||
+ | & = \left\{ 5 q^2 + 2 q r - \left( 5 q + r \right) 270 + q + \frac{r^2 + r}{5} \right\} \\ | ||
+ | & = \left\{\frac{r^2 + r}{5} \right\} \\ | ||
+ | & = \left\{ | ||
+ | \begin{array}{ll} | ||
+ | 0 & \mbox{ if } r = 0, 4 \\ | ||
+ | \frac{2}{5} & \mbox{ if } r = 1, 3 \\ | ||
+ | \frac{1}{5} & \mbox{ if } r = 2 | ||
+ | \end{array} | ||
+ | \right. . | ||
+ | \end{align*} | ||
+ | </cmath> | ||
+ | |||
+ | Therefore, | ||
+ | <cmath> | ||
+ | \begin{align*} | ||
+ | U & = \sum_{n=1}^{2023} \left( \frac{n^2 - na}{5} - \left\{ \frac{n^2 - na}{5} \right\} \right) \\ | ||
+ | & = UB | ||
+ | - \sum_{n=1}^{2023} \left\{ \frac{n^2 - na}{5} \right\} \\ | ||
+ | & = - \sum_{n=1}^{2023} \left\{ \frac{n^2 - na}{5} \right\} \\ | ||
+ | & = - \sum_{q=0}^{404} \sum_{r=0}^4 \left\{\frac{r^2 + r}{5} \right\} | ||
+ | + \left\{ \frac{0^2 - 0 \cdot a}{5} \right\} | ||
+ | + \left\{ \frac{2024^2 - 2024a}{5} \right\} \\ | ||
+ | & = - \sum_{q=0}^{404} \left( 0 + 0 + \frac{2}{5} + \frac{2}{5} + \frac{1}{5} \right) | ||
+ | + 0 + 0 \\ | ||
+ | & = - 405 . | ||
+ | \end{align*} | ||
+ | </cmath> | ||
+ | |||
+ | Therefor, <math>a + U = 1349 - 405 = \boxed{\textbf{(944) }}</math>. | ||
+ | |||
+ | ~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com) | ||
==Video Solution by Punxsutawney Phil== | ==Video Solution by Punxsutawney Phil== | ||
https://youtu.be/jQVbNJr0tX8 | https://youtu.be/jQVbNJr0tX8 | ||
+ | |||
+ | ==Video Solution== | ||
+ | |||
+ | https://youtu.be/fxsPmL6wuW4 | ||
+ | |||
+ | ~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com) | ||
==See also== | ==See also== |
Revision as of 12:36, 8 February 2023
Contents
Problem 10
There exists a unique positive integer for which the sum is an integer strictly between and . For that value , find .
(Note that denotes the greatest integer that is less than or equal to .)
Bounds and Decimal Part Analysis
Define .
First, we bound .
We establish an upper bound of . We have
We establish a lower bound of . We have
We notice that if , then . Thus,
Because and , we must have either or .
For , we get a unique . For , there is no feasible .
Therefore, . Thus .
Next, we compute .
Let , where .
We have
Therefore,
Therefor, .
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
Video Solution by Punxsutawney Phil
Video Solution
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
See also
2023 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 9 |
Followed by Problem 11 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.