Difference between revisions of "2023 AIME I Problems/Problem 8"
MRENTHUSIASM (talk | contribs) |
MRENTHUSIASM (talk | contribs) |
||
Line 40: | Line 40: | ||
This solution refers to the <b>Diagram</b> section. | This solution refers to the <b>Diagram</b> section. | ||
+ | |||
+ | Let <math>O</math> be the incenter of <math>ABCD.</math> Suppose that <math>R,S,</math> and <math>T</math> are the feet of the perpendiculars from <math>P</math> to <math>\overleftrightarrow{DA},\overleftrightarrow{AB},</math> and <math>\overleftrightarrow{BC},</math> respectively. | ||
+ | |||
+ | Rhombus <math>ABCD</math> has <math>\angle BAD < 90^\circ.</math> There is a point <math>P</math> on the incircle of the rhombus such that the distances from <math>P</math> to the lines <math>DA,AB,</math> and <math>BC</math> are <math>9,5,</math> and <math>16,</math> respectively. Find the perimeter of <math>ABCD.</math> | ||
==Solution 2== | ==Solution 2== |
Revision as of 16:24, 9 February 2023
Problem
Rhombus has There is a point on the incircle of the rhombus such that the distances from to the lines and are and respectively. Find the perimeter of
Diagram
~MRENTHUSIASM
Solution 1
This solution refers to the Diagram section.
Let be the incenter of Suppose that and are the feet of the perpendiculars from to and respectively.
Rhombus has There is a point on the incircle of the rhombus such that the distances from to the lines and are and respectively. Find the perimeter of
Solution 2
Label the points of the rhombus to be , , , and and the center of the incircle to be so that , , and are the distances from point to side , side , and respectively. Through this, we know that the distance from the two pairs of opposite lines of rhombus is and circle has radius .
Call the feet of the altitudes from P to side , side , and side to be , , and respectively. Additionally, call the feet of the altitudes from to side , side , and side to be , , and respectively.
Draw a line segment from to so that it is perpendicular to . Notice that this segment length is equal to and is by Pythagorean Theorem.
Similarly, perform the same operations with side to get .
By equal tangents, . Now, label the length of segment and .
Using Pythagorean Theorem again, we get
Which also gives us and .
Since the diagonals of the rhombus intersect at and are angle bisectors and are also perpendicular to each other, we can get that
~Danielzh
Solution 3
Denote by the center of . We drop an altitude from to that meets at point . We drop altitudes from to and that meet and at and , respectively. We denote . We denote the side length of as .
Because the distances from to and are and , respectively, and , the distance between each pair of two parallel sides of is . Thus, and .
We have
Thus, .
In , we have . Thus,
Taking the imaginary part of this equation and plugging and into this equation, we get
We have
Because is on the incircle of , . Plugging this into , we get the following equation
By solving this equation, we get and . Therefore, .
Therefore, the perimeter of is .
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
See also
2023 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 7 |
Followed by Problem 9 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.