Difference between revisions of "2016 AMC 10A Problems/Problem 1"

(Solution 3)
(Video Solution)
Line 24: Line 24:
  
 
answer is <math>10^2</math> which is 100
 
answer is <math>10^2</math> which is 100
 +
 +
==Video Solution (HOW TO THINK CREATIVELY!!!)==
 +
https://youtu.be/r5G98oPPyNM
 +
 +
~Education, the Study of Everything
 +
 +
  
 
==Video Solution==
 
==Video Solution==
 
https://youtu.be/VIt6LnkV4_w
 
https://youtu.be/VIt6LnkV4_w
  
~IceMatrix
 
  
 
https://youtu.be/CrS7oHDrvP8
 
https://youtu.be/CrS7oHDrvP8

Revision as of 09:59, 16 June 2023

Problem

What is the value of $\dfrac{11!-10!}{9!}$?

$\textbf{(A)}\ 99\qquad\textbf{(B)}\ 100\qquad\textbf{(C)}\ 110\qquad\textbf{(D)}\ 121\qquad\textbf{(E)}\ 132$

Solution 1

We can use subtraction of fractions to get \[\frac{11!-10!}{9!} = \frac{11!}{9!} - \frac{10!}{9!} = 110 -10 = \boxed{\textbf{(B)}\;100}.\]

Solution 2

Factoring out $9!$ gives $\frac{11!-10!}{9!} = \frac{9!(11 \cdot 10 - 10)}{9!} = 110-10=\boxed{\textbf{(B)}~100}$.


Solution 3

$\dfrac{11!-10!}{9!}$ consider 10 as n $\dfrac{(n+1)!-n!}{(n-1)!}$ simpify $\dfrac{(n+1)n!-(-1)n!}{(n-1)!}$ = $\dfrac{n(n!)}{(n-1)!}$ = $\dfrac{n(n(n-1)!)}{(n-1)!}$ = $\dfrac{n(n)(1)}{(1}$ = $\dfrac{n^2}{1}$ subsitute n as 10 again $\dfrac{10^2}{1}$

answer is $10^2$ which is 100

Video Solution (HOW TO THINK CREATIVELY!!!)

https://youtu.be/r5G98oPPyNM

~Education, the Study of Everything


Video Solution

https://youtu.be/VIt6LnkV4_w


https://youtu.be/CrS7oHDrvP8

~savannahsolver

See Also

2016 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
First Problem
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2016 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
First Problem
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png