Difference between revisions of "2014 AMC 8 Problems/Problem 13"

(Video Solution)
(Video Solution)
Line 3: Line 3:
  
 
<math>\textbf{(A) }</math> <math>n</math> and <math>m</math> are even <math>\qquad\textbf{(B) }</math> <math>n</math> and <math>m</math> are odd <math>\qquad\textbf{(C) }</math> <math>n+m</math> is even <math>\qquad\textbf{(D) }</math> <math>n+m</math> is odd <math>\qquad \textbf{(E) }</math> none of these are impossible
 
<math>\textbf{(A) }</math> <math>n</math> and <math>m</math> are even <math>\qquad\textbf{(B) }</math> <math>n</math> and <math>m</math> are odd <math>\qquad\textbf{(C) }</math> <math>n+m</math> is even <math>\qquad\textbf{(D) }</math> <math>n+m</math> is odd <math>\qquad \textbf{(E) }</math> none of these are impossible
 +
 +
 +
==Video Solution (CREATIVE THINKING)==
 +
https://youtu.be/jQLIxT5qCTY
 +
 +
~Education, the Study of Everything
 +
  
  

Revision as of 10:11, 2 July 2023

Problem

If $n$ and $m$ are integers and $n^2+m^2$ is even, which of the following is impossible?

$\textbf{(A) }$ $n$ and $m$ are even $\qquad\textbf{(B) }$ $n$ and $m$ are odd $\qquad\textbf{(C) }$ $n+m$ is even $\qquad\textbf{(D) }$ $n+m$ is odd $\qquad \textbf{(E) }$ none of these are impossible


Video Solution (CREATIVE THINKING)

https://youtu.be/jQLIxT5qCTY

~Education, the Study of Everything


Video Solution

https://www.youtube.com/watch?v=boXUIcEcAno ~David

https://youtu.be/_3n4f0v6B7I ~savannahsolver

Solution

Since $n^2+m^2$ is even, either both $n^2$ and $m^2$ are even, or they are both odd. Therefore, $n$ and $m$ are either both even or both odd, since the square of an even number is even and the square of an odd number is odd. As a result, $n+m$ must be even. The answer, then, is $\boxed{D}$.

See Also

2014 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 12
Followed by
Problem 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png