Difference between revisions of "2006 AMC 12A Problems/Problem 23"
Agentdabber (talk | contribs) (→Solution 2) |
Agentdabber (talk | contribs) (→Solution 2) |
||
Line 13: | Line 13: | ||
In general, <math>A^n(S)=\left(\frac{(x+1)^n}{2^n},\frac{x(x+1)^n}{2^n},...,\frac{x^{100-n}(x+1)^n}{2^n}\right)</math> such that <math>A^n(s)</math> has <math>101-n</math> terms. Specifically, <math>A^{100}(S)=\frac{(x+1)^{100}}{2^{100}}</math> To find x, we need only solve the equation <math>\frac{(x+1)^{100}}{2^{100}}=\frac{1}{2^{50}}</math>. Algebra yields <math>x=\sqrt{2}-1</math>. | In general, <math>A^n(S)=\left(\frac{(x+1)^n}{2^n},\frac{x(x+1)^n}{2^n},...,\frac{x^{100-n}(x+1)^n}{2^n}\right)</math> such that <math>A^n(s)</math> has <math>101-n</math> terms. Specifically, <math>A^{100}(S)=\frac{(x+1)^{100}}{2^{100}}</math> To find x, we need only solve the equation <math>\frac{(x+1)^{100}}{2^{100}}=\frac{1}{2^{50}}</math>. Algebra yields <math>x=\sqrt{2}-1</math>. | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
== See also == | == See also == |
Revision as of 20:42, 27 September 2023
Problem
Given a finite sequence of real numbers, let be the sequence of real numbers. Define and, for each integer , , define . Suppose , and let . If , then what is ?
Solution 1
In general, such that has terms. Specifically, To find x, we need only solve the equation . Algebra yields .
See also
2006 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 22 |
Followed by Problem 24 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.