Difference between revisions of "2023 AMC 12A Problems/Problem 22"

(oops typo)
m (forgot to sign my username :))
Line 6: Line 6:
 
==Video Solution by MOP 2024==
 
==Video Solution by MOP 2024==
 
https://YouTube.com/watch?v=gdhVqdRhMsQ
 
https://YouTube.com/watch?v=gdhVqdRhMsQ
 +
 +
~r00tsOfUnity
  
 
==See also==
 
==See also==

Revision as of 14:51, 9 November 2023

Problem

Let $f$ be the unique function defined on the positive integers such that \[\sum_{d\mid n}d\cdot f\left(\frac{n}{d}\right)=1\] for all positive integers $n$. What is $f(2023)$?

$\textbf{(A)}~-1536\qquad\textbf{(B)}~96\qquad\textbf{(C)}~108\qquad\textbf{(D)}~116\qquad\textbf{(E)}~144$

Video Solution by MOP 2024

https://YouTube.com/watch?v=gdhVqdRhMsQ

~r00tsOfUnity

See also

2023 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 21
Followed by
Problem 23
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png