Difference between revisions of "2023 AMC 12A Problems/Problem 10"

(See also)
Line 9: Line 9:
  
 
==See also==
 
==See also==
{{AMC12 box|year=2023|ab=A|num-a=9|num-a=11}}
+
{{AMC12 box|year=2023|ab=A|num-a=10}}
  
 
[[Category:Rate Problems]]
 
[[Category:Rate Problems]]
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 19:16, 9 November 2023

Problem

Positive real numbers $x$ and $y$ satisfy $y^3=x^2$ and $(y-x)^2=4y^2$. What is $x+y$? $\textbf{(A) }12\qquad\textbf{(B) }18\qquad\textbf{(C) }24\qquad\textbf{(D) }36\qquad\textbf{(E) }42$

Solution

Because $y^3=x^2$, set $x=a^3$, $y=a^2$ ($a\neq 0$). Put them in $(y-x)^2=4y^2$ we get $(a^2(a-1))^2=4a^4$ which implies $a^2-2a+1=4$. Solve the equation to get $a=3$ or $-1$. Since $x$ and $y$ are positive, $a=3$ and $x+y=3^3+3^2=\boxed{\textbf{(D)} 36}$.

~plasta

See also

2023 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
[[2023 AMC 12A Problems/Problem {{{num-b}}}|Problem {{{num-b}}}]]
Followed by
Problem 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png