Difference between revisions of "2023 AMC 10A Problems/Problem 13"

m (format)
(Fixed minor typo and added See Also)
Line 1: Line 1:
 +
==Problem==
 
Abdul and Chiang are standing <math>48</math> feet apart in a field. Bharat is standing in the same field as far from Abdul as possible so that the angle formed by his lines of sight to Abdul and Chaing measures <math>60^\circ</math>. What is the square of the distance (in feet) between Abdul and Bharat?  
 
Abdul and Chiang are standing <math>48</math> feet apart in a field. Bharat is standing in the same field as far from Abdul as possible so that the angle formed by his lines of sight to Abdul and Chaing measures <math>60^\circ</math>. What is the square of the distance (in feet) between Abdul and Bharat?  
  
<math>\textbf{(A) }\frac1728\qquad\textbf{(B) }2601\qquad\textbf{(C) }3072\qquad\textbf{(D) }4608\qquad\textbf{(E) }6912</math>
+
<math>\textbf{(A) }1728\qquad\textbf{(B) }2601\qquad\textbf{(C) }3072\qquad\textbf{(D) }4608\qquad\textbf{(E) }6912</math>
  
 
==Solution 1==
 
==Solution 1==
Line 21: Line 22:
  
 
Let us begin by circumscribing the two points A and C so that the arc it determines has measure <math>120</math>. Then the point B will lie on the circle, which we can quickly find the radius of by using the 30-60-90 triangle formed by the radius and the midpoint of segment <math>\overline{AC}</math>. We will find that <math>r=16*\sqrt3</math>. Due to the triangle inequality, <math>\overline{AB}</math> is maximized when B is on the diameter passing through A, giving a length of <math>32*\sqrt3</math> and when squared gives <math>\boxed{\text{(C) }3072}</math>.
 
Let us begin by circumscribing the two points A and C so that the arc it determines has measure <math>120</math>. Then the point B will lie on the circle, which we can quickly find the radius of by using the 30-60-90 triangle formed by the radius and the midpoint of segment <math>\overline{AC}</math>. We will find that <math>r=16*\sqrt3</math>. Due to the triangle inequality, <math>\overline{AB}</math> is maximized when B is on the diameter passing through A, giving a length of <math>32*\sqrt3</math> and when squared gives <math>\boxed{\text{(C) }3072}</math>.
 +
 +
==See Also==
 +
{{AMC10 box|year=2023|ab=A|num-b=12|num-a=14}}
 +
{{MAA Notice}}

Revision as of 21:22, 9 November 2023

Problem

Abdul and Chiang are standing $48$ feet apart in a field. Bharat is standing in the same field as far from Abdul as possible so that the angle formed by his lines of sight to Abdul and Chaing measures $60^\circ$. What is the square of the distance (in feet) between Abdul and Bharat?

$\textbf{(A) }1728\qquad\textbf{(B) }2601\qquad\textbf{(C) }3072\qquad\textbf{(D) }4608\qquad\textbf{(E) }6912$

Solution 1

2023 10a 13.png

Let $\theta=\angle ACB$ and $x=\overline{AB}$.

By the Law of Sines, we know that $\dfrac{\sin\theta}x=\dfrac{\sin60^\circ}{48}=\dfrac{\sqrt3}{96}$. Rearranging, we get that $x=\dfrac{\sin\theta}{\frac{\sqrt3}{96}}=32\sqrt3\sin\theta$ where $x$ is a function of $\theta$. We want to maximize $x$.

We know that the maximum value of $\sin\theta=1$, so this yields $x=32\sqrt3\implies x^2=\boxed{\text{(C) }3072.}$

A quick checks verifies that $\theta=90^\circ$ indeed works.

~Technodoggo

Solution 2 (no law of sines)

Help with the diagram please?

Let us begin by circumscribing the two points A and C so that the arc it determines has measure $120$. Then the point B will lie on the circle, which we can quickly find the radius of by using the 30-60-90 triangle formed by the radius and the midpoint of segment $\overline{AC}$. We will find that $r=16*\sqrt3$. Due to the triangle inequality, $\overline{AB}$ is maximized when B is on the diameter passing through A, giving a length of $32*\sqrt3$ and when squared gives $\boxed{\text{(C) }3072}$.

See Also

2023 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 12
Followed by
Problem 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png