Difference between revisions of "2023 AMC 10A Problems/Problem 15"
(→Solution) |
(Added answers and See Also) |
||
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
An even number of circles are nested, starting with a radius of <math>1</math> and increasing by <math>1</math> each time, all sharing a common point. The region between every other circle is shaded, starting with the region inside the circle of radius <math>2</math> but outside the circle of radius <math>1.</math> An example showing <math>8</math> circles is displayed below. What is the least number of circles needed to make the total shaded area at least <math>2023\pi</math>? | An even number of circles are nested, starting with a radius of <math>1</math> and increasing by <math>1</math> each time, all sharing a common point. The region between every other circle is shaded, starting with the region inside the circle of radius <math>2</math> but outside the circle of radius <math>1.</math> An example showing <math>8</math> circles is displayed below. What is the least number of circles needed to make the total shaded area at least <math>2023\pi</math>? | ||
+ | <math>\textbf{(A) } 46 \qquad \textbf{(B) } 48 \qquad \textbf{(C) } 56 \qquad \textbf{(D) } 60 \qquad \textbf{(E) } 64</math> | ||
[insert asy of diagram below] | [insert asy of diagram below] | ||
Line 9: | Line 10: | ||
~MrThinker | ~MrThinker | ||
+ | |||
+ | ==See Also== | ||
+ | {{AMC10 box|year=2023|ab=A|num-b=14|num-a=16}} | ||
+ | {{MAA Notice}} |
Revision as of 20:30, 9 November 2023
Problem
An even number of circles are nested, starting with a radius of and increasing by each time, all sharing a common point. The region between every other circle is shaded, starting with the region inside the circle of radius but outside the circle of radius An example showing circles is displayed below. What is the least number of circles needed to make the total shaded area at least ?
[insert asy of diagram below]
Solution
Notice that the area of the shaded region is for any even number .
Using the difference of squares, this simplifies to . So, we are basically finding the smallest such that . Since , the only option higher than is .
~MrThinker
See Also
2023 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 14 |
Followed by Problem 16 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.