Difference between revisions of "2023 AMC 12A Problems/Problem 10"

(Solution 2: Quadractic formula)
(Solution 2: Quadractic formula)
Line 39: Line 39:
  
 
<math>x=\frac{2y\pm\sqrt{16y^2}}{2a}</math>
 
<math>x=\frac{2y\pm\sqrt{16y^2}}{2a}</math>
 +
 
<math>x=\frac{2y\pm\4y}}{2a}</math>
 
<math>x=\frac{2y\pm\4y}}{2a}</math>
  

Revision as of 23:37, 9 November 2023

Problem

Positive real numbers $x$ and $y$ satisfy $y^3=x^2$ and $(y-x)^2=4y^2$. What is $x+y$? $\textbf{(A) }12\qquad\textbf{(B) }18\qquad\textbf{(C) }24\qquad\textbf{(D) }36\qquad\textbf{(E) }42$

Solution 1

Because $y^3=x^2$, set $x=a^3$, $y=a^2$ ($a\neq 0$). Put them in $(y-x)^2=4y^2$ we get $(a^2(a-1))^2=4a^4$ which implies $a^2-2a+1=4$. Solve the equation to get $a=3$ or $-1$. Since $x$ and $y$ are positive, $a=3$ and $x+y=3^3+3^2=\boxed{\textbf{(D)} 36}$.

~plasta

Solution 2

Let's take the second equation and square root both sides. This will obtain $y-x = \pm2y$. Solving the case where $y-x=+2y$, we'd find that $x=-y$. This is known to be false because both $x$ and $y$ have to be positive, and $x=-y$ implies that at least one of the variables is not positive. So we instead solve the case where $y-x=-2y$. This means that $x=3y$. Inputting this value into the first equation, we find: \[y^3 = (3y)^2\] \[y^3 = 9y^2\] \[y=9\] This means that $x=3y=3(9)=27$. Therefore, $x+y=9+27=\boxed{36}$

~lprado


Solution 2: Quadractic formula

first expand

$(y-x)^2 = 4y^2$

$y^2-2xy+x^2 = 4y^2$

$y^2-2yx+x^2 = 4y^2$

$x^2-2xy-3y^2 = 0$

$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$

consider a=1 b=-2y c=-3y^2

$x=\frac{2y\pm\sqrt{(-2y)^2-4(1)(-3y^2)}}{2a}$

$x=\frac{2y\pm\sqrt{16y^2}}{2a}$

$x=\frac{2y\pm\4y}}{2a}$ (Error compiling LaTeX. Unknown error_msg)

See also

2023 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 9
Followed by
Problem 11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png