Difference between revisions of "2023 AMC 10A Problems/Problem 8"

m (Latex and degree symbols)
(Solution 4)
Line 26: Line 26:
 
==Solution 4==
 
==Solution 4==
 
We note that the range of F temperatures that <math>0-100</math> <math>\text{Br}^\circ</math> represents is <math>350-110 = 240</math> <math>\text{F}^\circ</math>.
 
We note that the range of F temperatures that <math>0-100</math> <math>\text{Br}^\circ</math> represents is <math>350-110 = 240</math> <math>\text{F}^\circ</math>.
<math>200</math> <math>\text{F}^\circ</math> is <math>(200-110) = 90</math> <math>\text{F}^\circ</math> along the way to getting to <math>240</math> <math>\text{F}^\circ</math>, the end of this range, or <math>90/240 = 9/24 = 3/8 = 0.375</math> of the way
+
<math>200</math> <math>\text{F}^\circ</math> is <math>(200-110) = 90</math> <math>\text{F}^\circ</math> along the way to getting to <math>240</math> <math>\text{F}^\circ</math>, the end of this range, or <math>90/240 = 9/24 = 3/8 = 0.375</math> of the way. Therefore if we switch to the Br scale, we are <math>0.375</math> of the way to <math>100</math> from <math>0</math>, or at <math>\boxed{\textbf{(D) }37.5}</math> <math>\text{Br}^\circ</math>.
Therefore if we switch to the Br scale, we are <math>0.375</math> of the way to <math>100</math> from <math>0</math>, or at <math>\boxed{\textbf{(D) }37.5}</math> <math>\text{Br}^\circ</math>.
 
  
 
~Dilip  
 
~Dilip  

Revision as of 09:57, 11 November 2023

Problem

Barb the baker has developed a new temperature scale for her bakery called the Breadus scale, which is a linear function of the Fahrenheit scale. Bread rises at $110$ degrees Fahrenheit, which is $0$ degrees on the Breadus scale. Bread is baked at $350$ degrees Fahrenheit, which is $100$ degrees on the Breadus scale. Bread is done when its internal temperature is $200$ degrees Fahrenheit. What is this in degrees on the Breadus scale?

$\textbf{(A) }33\qquad\textbf{(B) }34.5\qquad\textbf{(C) }36\qquad\textbf{(D) }37.5\qquad\textbf{(E) }39$


Solution 1 (Substitution)

To solve this question, you can use $y = mx + b$ where the $x$ is Fahrenheit and the $y$ is Breadus. We have $(110,0)$ and $(350,100)$. We want to find the value of $y$ in $(200,y)$ that falls on this line. The slope for these two points is $\frac{5}{12}$; $y = \frac{5}{12}x + b$. Solving for $b$ using $(110, 0)$, $\frac{550}{12} = -b$. We get $b = \frac{-275}{6}$. Plugging in $(200, y), \frac{1000}{12}-\frac{550}{12}=y$. Simplifying, $\frac{450}{12} = \boxed{\textbf{(D) }37.5}$

~walmartbrian

Solution 2 (Faster)

Let $^\circ B$ denote degrees Breadus. We notice that $200^\circ F$ is $90^\circ F$ degrees to $0^\circ B$, and $150^\circ F$ to $100^\circ B$. This ratio is $90:150=3:5$; therefore, $200^\circ F$ will be $\dfrac3{3+5}=\dfrac38$ of the way from $0$ to $100$, which is $\boxed{\textbf{(D) }37.5.}$

~Technodoggo

Solution 3 (Intuitive)

From $110$ to $350$ degrees Fahrenheit, the Breadus scale goes from $1$ to $100$. $110$ to $350$ degrees is a span of $240$, and we can use this to determine how many Fahrenheit each Breadus unit is worth. $240$ divided by $100$ is $2.4$, so each Breadus unit is $2.4$ Fahrenheit, starting at $110$ Fahrenheit. For example, $1$ degree on the Breadus scale is $110 + 2.4$, or $112.4$ Fahrenheit. Using this information, we can figure out how many Breadus degrees $200$ Fahrenheit is. $200-110$ is $90$, so we divide $90$ by $2.4$ to find the answer, which is $\boxed{\textbf{(D) }37.5}$

~MercilessAnimations

Solution 4

We note that the range of F temperatures that $0-100$ $\text{Br}^\circ$ represents is $350-110 = 240$ $\text{F}^\circ$. $200$ $\text{F}^\circ$ is $(200-110) = 90$ $\text{F}^\circ$ along the way to getting to $240$ $\text{F}^\circ$, the end of this range, or $90/240 = 9/24 = 3/8 = 0.375$ of the way. Therefore if we switch to the Br scale, we are $0.375$ of the way to $100$ from $0$, or at $\boxed{\textbf{(D) }37.5}$ $\text{Br}^\circ$.

~Dilip ~Minor edits by FutureSphinx

Video Solution by Math-X (First understand the problem!!!)

https://youtu.be/cMgngeSmFCY?si=88mPIms6wdZ6-deq&t=1602 ~Math-X

Video Solution

https://youtu.be/bYzV5B425V4

~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)


See Also

2023 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 7
Followed by
Problem 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png