Difference between revisions of "2023 AIME I Problems/Problem 2"
(→Solution 2) |
Mathkiddie (talk | contribs) (→Solution 2) |
||
Line 17: | Line 17: | ||
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com) | ~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com) | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
==Video Solution by TheBeautyofMath== | ==Video Solution by TheBeautyofMath== |
Revision as of 22:18, 23 January 2024
Problem
Positive real numbers and satisfy the equations The value of is where and are relatively prime positive integers. Find
Solution
Denote . Hence, the system of equations given in the problem can be rewritten as Solving the system gives and . Therefore, Therefore, the answer is .
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
Video Solution by TheBeautyofMath
~IceMatrix
See also
2023 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 1 |
Followed by Problem 3 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.